引用本文
  • 张兵,蒙祖强,沈亮亮,李虹利.基于局部密度和纯度的自适应k近邻算法[J].广西科学院学报,2017,33(1):19-24.    [点击复制]
  • ZHANG Bing,MENG Zuqiang,SHEN Liangliang,LI Hongli.Adaptive k Neighbor Algorithm based on Local Density and Purity[J].Journal of Guangxi Academy of Sciences,2017,33(1):19-24.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 470次   下载 592 本文二维码信息
码上扫一扫!
基于局部密度和纯度的自适应k近邻算法
张兵, 蒙祖强, 沈亮亮, 李虹利
0
(广西大学计算机与电子信息学院, 广西南宁 530004)
摘要:
[目的]针对K最近邻(K-Nearest Neighbor,KNN)算法中k值的选取通常是人为设定,而且通常是固定的缺点,研究如何更好地选取k值。[方法]引入k的可信度的概念,提出一种基于局部密度和纯度的自适应选取k值的方法,并将其引入到传统的KNN分类算法中。[结果]该算法合理的考虑了样本的局部密度、纯度与选取k值的关系,不仅解决了k值的选取问题,并且避免了固定k值对分类的影响。[结论]该算法是有效的,可以得到较高的准确率,但算法的时效性有待提高。
关键词:  k的可信度  自适应k  KNN分类
DOI:10.13657/j.cnki.gxkxyxb.20170215.002
投稿时间:2016-12-20
基金项目:国家自然科学基金项目(61363027)和广西自然科学基金项目(2015GXNSFAA139292)资助。
Adaptive k Neighbor Algorithm based on Local Density and Purity
ZHANG Bing, MENG Zuqiang, SHEN Liangliang, LI Hongli
(School of Computer, Electronics and Information in Guangxi University, Nanning, Guangxi, 530004, China)
Abstract:
[Objective] Aiming at the selection of parameter k value(usually fixed) in KNN algorithm is usually set by users,we should study how to better select k values.[Methods] This paper introduces the concept of the credibility of k,and proposes an improved adaptive selection of k values based on the local density and purity,and introduces into the traditional KNN classification algorithm.[Results] The algorithm is reasonable to consider the relationship between the local density and purity and the selection of k values,which not only solves the problems of choosing k values,but also avoids the influence of fixed k value on classification.[Conclusion] The algorithm is effective and can get higher accuracy,and the timeliness is also enhanced.
Key words:  credibility of k  adaptive k  KNN classification

用微信扫一扫

用微信扫一扫