引用本文: |
-
张兵,蒙祖强,沈亮亮,李虹利.基于局部密度和纯度的自适应k近邻算法[J].广西科学院学报,2017,33(1):19-24. [点击复制]
- ZHANG Bing,MENG Zuqiang,SHEN Liangliang,LI Hongli.Adaptive k Neighbor Algorithm based on Local Density and Purity[J].Journal of Guangxi Academy of Sciences,2017,33(1):19-24. [点击复制]
|
|
摘要: |
[目的]针对K最近邻(K-Nearest Neighbor,KNN)算法中k值的选取通常是人为设定,而且通常是固定的缺点,研究如何更好地选取k值。[方法]引入k的可信度的概念,提出一种基于局部密度和纯度的自适应选取k值的方法,并将其引入到传统的KNN分类算法中。[结果]该算法合理的考虑了样本的局部密度、纯度与选取k值的关系,不仅解决了k值的选取问题,并且避免了固定k值对分类的影响。[结论]该算法是有效的,可以得到较高的准确率,但算法的时效性有待提高。 |
关键词: k的可信度 自适应k值 KNN分类 |
DOI:10.13657/j.cnki.gxkxyxb.20170215.002 |
投稿时间:2016-12-20 |
基金项目:国家自然科学基金项目(61363027)和广西自然科学基金项目(2015GXNSFAA139292)资助。 |
|
Adaptive k Neighbor Algorithm based on Local Density and Purity |
ZHANG Bing, MENG Zuqiang, SHEN Liangliang, LI Hongli
|
(School of Computer, Electronics and Information in Guangxi University, Nanning, Guangxi, 530004, China) |
Abstract: |
[Objective] Aiming at the selection of parameter k value(usually fixed) in KNN algorithm is usually set by users,we should study how to better select k values.[Methods] This paper introduces the concept of the credibility of k,and proposes an improved adaptive selection of k values based on the local density and purity,and introduces into the traditional KNN classification algorithm.[Results] The algorithm is reasonable to consider the relationship between the local density and purity and the selection of k values,which not only solves the problems of choosing k values,but also avoids the influence of fixed k value on classification.[Conclusion] The algorithm is effective and can get higher accuracy,and the timeliness is also enhanced. |
Key words: credibility of k adaptive k KNN classification |