广西科学  2016, Vol. 23 Issue (4): 374-377   PDF    
一类Caputo分数阶微分方程边值问题多解的存在性
郭彩霞, 任玉岗, 郭建敏     
山西大同大学数学与计算机科学学院,山西大同 037009
摘要: 研究一类Caputo分数阶微分方程边值问题: $ \left\{ {\begin{array}{*{20}{l}} {D_{0 + }^\alpha u\left( t \right) + f\left( {t,u\left( t \right)} \right) = 0,t \in \left( {0,1} \right),}\\ {u'\left( 0 \right) = u\left( 1 \right) = 0,} \end{array}} \right. $多解的存在性,其中1 < α≤2,f:[0, +∞)×$ \mathbb{R} $→[0, +∞)是连续的,D0+α是标准的Caputo微分.先将微分方程边值问题转化为积分方程,再转化为积分算子不动点问题,最后利用Leggett-Williams不动点定理得出Caputo分数阶微分方程边值问题至少有3个正解存在, 其中格林函数的性质和非线性项的条件至关重要.
关键词: 分数阶微分方程     边值问题     Leggett-Williams不动点定理    
Existence of Multiple Solutions for a Caputo Fractional Difference Equation Boundary Value Problem
GUO Caixia , REN Yugang , GUO Jianmin     
School of Mathematics and Computer Science, Datong University, Datong, Shanxi, 037009, China
Abstract: We investigate the existence and multiplicity of positive solutions for nonlinear Caputo fractional differential equation boundary value problem$ \left\{ {\begin{array}{*{20}{l}} {D_{0 + }^\alpha u\left( t \right) + f\left( {t,u\left( t \right)} \right) = 0,t \in \left( {0,1} \right),}\\ {u'\left( 0 \right) = u\left( 1 \right) = 0,} \end{array}} \right. $Where 1 < α≤2, f:[0, +∞)×$ \mathbb{R} $→[0, +∞) is continuous, and D0+α is the standard Caputo differentiation.In the process of proof, we first transform it into integral equation, then differential equation boundary value problem is further converted to discuss the problem of integral operator fixed point. Finally, by means of Leggett-Williams fixed point theorems on cone, existence results of at least three positive solutions are obtained.The properties of the Green function and the conditions of the nonlinear term is very important.
Key words: fractional difference equation     boundary value problem     Leggett-Williams fixed point theorems    
0 引言

分数阶微分方程在工程、化学、物理、生物等领域有着广泛应用,例如热传导领域和流体学领域[1-3], 而且分数阶导数模型克服了经典整数阶微分模型理论与实验结果不吻合的缺点[4], 因此研究分数阶微分方程边值问题有着重要的意义.近年来,大量文献报道微分方程[5-6]和分数阶微分方程[4, 7-10]边值问题解的存在性.2005年,当1 < α≤2时,Bai等[7]推导了分数阶微分方程边值问题

$ \left\{ {\begin{array}{*{20}{l}} {D_{0 + }^\alpha u\left( t \right) + f\left( {t, u\left( t \right)} \right) = 0, t \in \left( {0, 1} \right), }\\ {u\left( 0 \right) = u\left( 1 \right) = 0, } \end{array}} \right. $

的格林函数及重要的性质(f:[0, +∞)×$ \mathbb{R} $→[0, +∞)是连续的,D0+α是标准的Riemann-Liouville微分),并运用锥拉伸与锥压缩不动点原理,研究其正解的存在性.2009年,当2 < α≤3时,Bai等[8]利用Leray-Schauder不动点定理和Krasnoselskii不动点定理证明Caputo分数阶微分方程边值问题

$ \left\{ {\begin{array}{*{20}{l}} {D_{0 + }^\alpha u\left( t \right) + f\left( {t, u\left( t \right)} \right) = 0, t \in \left( {0, 1} \right), }\\ {u\left( 0 \right) = u'\left( 1 \right) = u''\left( 0 \right) = 0, } \end{array}} \right. $

至少存在一个正解,其中f:[0, +∞)×$ \mathbb{R} $→[0, +∞)是连续的,D0+α是标准的Caputo微分.2015年,Abdulkadir Dogan[9]利用Leggett-Williams不动点定理证明二阶微分方程边值问题

$ \left\{ {\begin{array}{*{20}{l}} {u''\left( t \right) + f\left( {u\left( t \right)} \right) = 0, t \in \left[{0, 1} \right], }\\ {u'\left( 0 \right) = u\left( 1 \right) = 0, } \end{array}} \right. $

存在正解,其中f:$ \mathbb{R} $→[0, +∞)是连续的.

目前研究分数阶微分方程边值问题的主要工具有锥拉伸与锥压缩不动点原理、Krasnoselskii不动点原理、Schauder不动点原理上下解等.本文利用Leggett-Williams不动点定理, 参照文献[9]中的方法研究Caputo分数阶微分方程边值问题

$ \left\{ {\begin{array}{*{20}{l}} {D_{0 + }^\alpha u\left( t \right) + f\left( {t,u\left( t \right)} \right) = 0,t \in \left( {0,1} \right),}\\ {u'\left( 0 \right) = u\left( 1 \right) = 0,} \end{array}} \right. $ (0.1)

正解的存在性,其中1 < α≤2,f:[0, +∞)×$ \mathbb{R} $→[0, +∞)是连续的,D0+α是标准的Caputo微分.一方面,边值问题(1)包含了文献[9]的整数阶微分方程边值问题,推广了文献[9]的结果;另一方面,非线性项f范围有所扩大.

1 预备知识

定义1.1[11]一个连续函数u:(0, +∞)→$ \mathbb{R} $α阶Caputo导数定义为

$ {}^CD_{0 + }^\alpha u\left( t \right) = \frac{1}{{\mathit{\Gamma} \left( {n-\alpha } \right)}}\int_0^t {\frac{{{u^{\left( n \right)}}\left( s \right)}}{{{{\left( {t-s} \right)}^{\alpha-n + 1}}}}} {\rm{d}}s, $

其中α>0,n=[α]+1,[α]代表实数α的整数部分。上式右边在(0, +∞)内逐点有定义.

引理1.1[11]α>0,若uACn[0,1]或uCn[0,1],则

$ I_{0 + }^\alpha {}^CD_{0 + }^\alpha u\left( t \right) = u\left( t \right)-\sum\limits_{k = 0}^{n-1} {\frac{{{u^{\left( k \right)}}\left( 0 \right)}}{{k!}}{t^k}}, $

其中n=[α]+1,I0+α代表α阶Riemann-Liouville型积分.

引理1.2α∈(1, 2],给定hC[0,1],则

$ {}^CD_{0 + }^\alpha u\left( t \right) + h\left( t \right) = 0,t \in \left( {0,1} \right), $ (1.1)
$ 2u'\left( 0 \right) = u\left( 1 \right) = 0, $ (1.2)

的唯一解为$ u\left( t \right) = \int_0^1 {G\left( {t, s} \right)h\left( s \right){\rm{d}}s}, $其中$ G\left( {t, s} \right) = \left\{ {\begin{array}{*{20}{l}} {\frac{{{{\left( {1-s} \right)}^{\alpha-1}}-{{\left( {t - s} \right)}^{\alpha - 1}}}}{{\mathit{\Gamma} \left( \alpha \right)}}, 0 \le s \le t \le 1}\\ {\frac{{{{\left( {1 - s} \right)}^{\alpha - 1}}}}{{\mathit{\Gamma} \left( \alpha \right)}}, 0 \le s \le t \le 1} \end{array}} \right. $是格林函数.

证明由引理1.1可得,(1.1)式等价于方程u(t)=-I0+αh(t)+C1+C2t,其中C1, C2$ \mathbb{R} $.从而u′(t)=-I0+α-1h(t)+C2.由(1.2)式可知C2=0, $ {C_1} = \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^1 {{{\left( {1-s} \right)}^{\alpha-1}}} h\left( s \right){\rm{d}}s. $

因此,(1.1)~(1.2)式的唯一解是

$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\;u\left( t \right) = \frac{{- 1}}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^t {{{\left( {t- s} \right)}^{\alpha- 1}}h\left( s \right){\rm{d}}} s + \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^1 {\left( {1 - } \right.} }\\ {{{\left. s \right)}^{\alpha - 1}}h\left( s \right){\rm{d}}s = \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^t {\left[{{{\left( {1-s} \right)}^{\alpha-1}}-{{\left( {t - s} \right)}^{\alpha - 1}}} \right]h\left( s \right){\rm{d}}} s + }\\ {\frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_t^1 {{{\left( {t -s} \right)}^{\alpha -1}}h\left( s \right){\rm{d}}} s = \int_0^1 {G\left( {t, s} \right)h\left( s \right)} {\rm{d}}s.} \end{array} $

引理1.3引理1.2中的G(t, s)有下列性质:

(ⅰ)G(t, s)∈C([0,1]×[0,1], $ \mathbb{R} $)且G(t, s)>0, t, s∈(0, 1);

(ⅱ)$ \mathit{\Gamma} \left( \alpha \right)\mathop {\max }\limits_{0 \le t \le 1} G\left( {t, s} \right) = {\left( {1- s} \right)^{\alpha- 1}}, t, s \in \left[{0, 1} \right]. $

(ⅲ)$ \int_0^1 {G\left( {s, s} \right){\rm{d}}s = \frac{1}{{\alpha \mathit{\Gamma} \left( \alpha \right)}}, \int_0^1 {G\left( {t, s} \right){\rm{d}}s} = \frac{{1-{t^\alpha }}}{{\alpha \mathit{\Gamma} \left( \alpha \right)}}, } \\ 0 \le t \le 1, $

(ⅳ)$ \frac{{\mathop {\max }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right)}}{{\mathop {\min }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right)}} \le M, \frac{{\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right)}}{{\mathop {\max }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right)}} \ge m, $其中$ M = \frac{{{{\left( {1-\frac{1}{r}} \right)}^{\alpha-1}}}}{{{{\left( {1-\frac{1}{r}} \right)}^{\alpha - 1}} - {{\left( {1 - \frac{1}{{2r}}} \right)}^{\alpha - 1}}}}, $$ m = \frac{{1-{{\left( {1-{t_1}} \right)}^{\alpha-1}}}}{{1 - t_1^{\alpha - 1}}} $.

证明(i)~(iii)显然可得,只需证明(iv).

$ {g_1}\left( {t, s} \right) = \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\left( {{{\left( {1-s} \right)}^{\alpha-1}}-{{\left( {t - s} \right)}^{\alpha - 1}}} \right), {g_2}\left( {t, s} \right) = \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}{\left( {1 - s} \right)^{\alpha - 1}}, $

$ \mathop {\max }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right) = \left\{ {\begin{array}{*{20}{l}} {{g_1}\left( {\frac{1}{r}, s} \right), s \in \left( 0 \right., \left. {\frac{1}{r}} \right], }\\ {{g_2}\left( {t, s} \right), s \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right], }\\ {{g_2}\left( {t, s} \right), s \in \left[{1-\frac{1}{r}} \right., \left. 1 \right), } \end{array}} \right. $
$ \mathop {\min }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right) = \left\{ {\begin{array}{*{20}{l}} {{g_1}\left( {1 -\frac{1}{r}, s} \right), s \in \left( 0 \right., \left. {\frac{1}{r}} \right], }\\ {{g_1}\left( {1 - \frac{1}{r}, s} \right), s \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right], }\\ {{g_2}\left( {t, s} \right), s \in \left[{1-\frac{1}{r}} \right., \left. 1 \right), } \end{array}} \right. $

从而$ \frac{{\mathop {\max }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right)}}{{\mathop {\min }\limits_{t \in \left[{\frac{1}{r}, 1-\frac{1}{r}} \right]} G\left( {t, s} \right)}} \le M $, 其中

$ M = \frac{{{{\left( {1-\frac{1}{r}} \right)}^{\alpha-1}}}}{{{{\left( {1-\frac{1}{r}} \right)}^{\alpha - 1}} - {{\left( {1 - \frac{1}{{2r}}} \right)}^{\alpha - 1}}}}. $

$ \begin{array}{*{20}{l}} {\mathop {\max }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right) =\\ \left\{ {\begin{array}{*{20}{l}} {{g_1}\left( {{t_1}, s} \right), s \in \left( 0 \right., \left. {{t_1}} \right]}\\ {{g_2}\left( {t, s} \right), s \in \left[{1- {t_2}, \left. 1 \right)} \right.} \end{array}, } \right.}\\ {\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right) =\\ \left\{ {\begin{array}{*{20}{l}} {{g_1}\left( {1 -{t_1}, s} \right), s \in \left( 0 \right., \left. {1 -{t_2}} \right]}\\ {{g_2}\left( {t, s} \right), s \in \left[{1-{t_2}, \left. 1 \right)} \right.} \end{array}, } \right.} \end{array} $

从而$ \frac{{\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right)}}{{\mathop {\max }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} G\left( {t, s} \right)}} \ge m $其中$ m = \frac{{1-{{\left( {1-{t_1}} \right)}^{\alpha-1}}}}{{1 - t_1^{\alpha - 1}}}. $

γ, β, θ是锥P上的非负连续凸函数,α, ψ是锥P上的非负连续凹函数,那么对非负实数h, a, b, dc,定义下列凸集:

P(γ, c)={uP:γ(u) < c},P(γ, α, a, c)={uP:aα(u), γ(u)≤c},

Q(γ, β, d, c)={uP:β(u)≤d, γ(u)≤c},

P(γ, θ, α, a, b, c)={uP:aα(u), θ(u)≤b, γ(u)≤c},

Q(γ, β, ψ, h, d, c)={uP:hψ(u), β(u)≤d, γ(u)≤c}.

定理1.1[12]E是一个实Banach空间,且PE是一个锥.假设存在正数cM,使锥P上的非负连续凹函数α, ψ及非负连续凸函数γ, β, θ满足

α(u)≤β(u), ‖u‖≤γ(u), uP(γ, c).

F:P(γ, c)P(γ, c)是一个全连续算子且存在非负实数h, d, a, b, 0 < d < a使得

(B1){uP(γ, θ, α, a, b, c):α(u)>a}≠∅且α(F(u)) > a, uP(γ, θ, α, a, b, c);

(B2){uQ(γ, β, ψ, h, d, c):β(u) < d}≠∅且β(F(u)) < d, uQ(γ, β, ψ, h, d, c);

(B3)若uP(γ, α, a, c)且θ(F(u))>b,则α(F(u))>a

(B4)若uQ(γ, β, d, c)且ψ(F(u)) < h,则β(F(u)) < d.

那么F至少有3个不动点u1, u2, u3P(γ, c), 使得

β(u1) < d, a < α(u2), d < β(u3), α(u3) < a.

2 主要结果

E=C[0,1],其范数为$ \left\| u \right\| = \mathop {\max }\limits_{t \in \left[{0, 1} \right]} \left| {u\left( t \right)} \right|. $$ 0 < {t_3} < \frac{1}{2} $时,定义E中锥PP={uE:u在[0,1]上是非负的凹函数,$ {\mathop {\min }\limits_{t \in \left[ {{t_3},1 - {t_3}} \right]} u\left( t \right) \ge \left\| u \right\|} $}又定义P上的非负连续凹函数α, ψ和非负连续凸函数γ, β, θ

$ \begin{array}{*{20}{l}} {\alpha \left( u \right) = \mathop {\min }\limits_{t \in \left[ {{t_1},{t_2}} \right] \cup \left[ {1 - {t_2},1 - {t_1}} \right]} u\left( t \right),\beta \left( u \right) = }\\ {\mathop {\max }\limits_{t \in \left[ {1/r,1 - 1/r} \right]} u\left( t \right)\gamma \left( u \right) = \mathop {\max }\limits_{t \in \left[ {0,{t_3}} \right] \cup \left[ {1 - {t_3},1} \right]} u\left( t \right),\theta \left( u \right) = }\\ {\mathop {\max }\limits_{t \in \left[ {{t_1},{t_2}} \right] \cup \left[ {1 - {t_2},1 - {t_1}} \right]} u\left( t \right),\psi \left( u \right) = \mathop {\min }\limits_{t \in \left[ {1/r,1 - 1/r} \right]} u\left( t \right).} \end{array} $

其中t1, t2r是非负的实数满足$ 0 < \frac{1}{r} < {t_1} < {t_2} \le \frac{1}{2}. $对任意uP, u是边值问题(1)的解等价于$ u\left( t \right) = \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right){\rm{d}}s}, $且对任意uP

$ \alpha \left( u \right) \le \beta \left( u \right), $ (2.1)
$ \begin{array}{*{20}{l}} {\;\;\;\;\;\gamma \left( u \right) = \mathop {\max }\limits_{t \in \left[ {0,{t_3}} \right] \cup \left[ {1 - {t_3},1} \right]} u\left( t \right) \ge \mathop {\max }\limits_{t \in \left[ {0,{t_3}} \right]} u\left( t \right) = }\\ {\mathop {\max }\limits_{t \in \left[ {0,{t_3}} \right]} \left( {\int_0^{{t_3}} {G\left( {t,s} \right)f\left( {s,u\left( s \right)} \right){\rm{d}}s + } \int_{{t_3}}^{1 - {t_3}} {G\left( {t,s} \right)f\left( {s,} \right.} } \right.}\\ {\left. {\left. {u\left( s \right)} \right){\rm{d}}s + \int_{1 - {t_3}}^1 {G\left( {t,s} \right)f\left( {s,u\left( s \right)} \right){\rm{d}}s} } \right) = }\\ {\frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^1 {{{\left( {1 - s} \right)}^{\alpha - 1}}} f\left( {s,u\left( s \right)} \right){\rm{d}}s = \left\| u \right\|.} \end{array} $ (2.2)

定理2.1假设存在非负实数a, bc使得$ 0 < a < b \le \frac{{c{t_1}}}{{{t_2}}}, $f满足下列的条件:

(H1)$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\;\;\;\;f\left( {t, u\left( t \right)} \right) < \frac{a}{{\mathit{\Gamma} \left( \alpha \right){{\left( {1- \frac{1}{r}} \right)}^{\alpha- 1}}}}, t \in \left[{\frac{1}{r}, 1-} \right.}\\ {\left. {\frac{1}{r}} \right], u\left( t \right) \in \left[{\frac{a}{M}, a} \right], } \end{array} $

(H2)$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\;\;\;\;\;\;\;f\left( {t, u\left( t \right)} \right) > \frac{{\alpha b\mathit{\Gamma} \left( \alpha \right)}}{{1- {{\left( {1- {t_1}} \right)}^\alpha }}}, t \in \left[{{t_1}, {t_2}} \right] \cup }\\ {\left[{1-{t_2}, 1-{t_1}} \right], u\left( t \right) \in \left[{b, \frac{b}{m}} \right], } \end{array} $

(H3)$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\;f\left( {t, u\left( t \right)} \right) \le c\alpha \mathit{\Gamma} \left( \alpha \right), t \in \left[{0, {t_3}} \right] \cup \left[{1-{t_3}, } \right.}\\ {\left. 1 \right], u\left( t \right) \in \left[{0, c} \right].} \end{array} $

那么,边值问题(1)至少有3个正解u1, u2u3, 满足

$ \begin{array}{*{20}{l}} {\mathop {\max }\limits_{t \in \left[{0, {t_3}} \right] \cup \left[{1-{t_3}, 1} \right]} {u_i} \le c, i = 1, 2, 3, }\\ {\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} {u_1}\left( t \right) > b, \mathop {\max }\limits_{t \in \left[{1/r, 1-1/r} \right]} {u_2}\left( t \right) < a, }\\ {\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} {u_3}\left( t \right) < b, \mathop {\max }\limits_{t \in \left[{1/r, 1-1/r} \right]} {u_3}\left( t \right) > a.} \end{array} $

证明在锥P上定义算子A

$ Au\left( t \right) = \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s. $

因为

$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;Au\left( t \right) = \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^t {\left( {{{\left( {1-s} \right)}^{\alpha-1}}-{{\left( {t - s} \right)}^{\alpha - 1}}} \right)} f\left( {s, } \right.}\\ {\left. {u\left( s \right)} \right){\rm{d}}s + \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_t^1 {{{\left( {1 - s} \right)}^{\alpha - 1}}f\left( {s, u\left( s \right)} \right){\rm{d}}s} \ge }\\ {\frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_0^t {{{\left( {1 - s} \right)}^{\alpha - 1}}f\left( {s, u\left( s \right)} \right){\rm{d}}s} + \frac{1}{{\mathit{\Gamma} \left( \alpha \right)}}\int_t^1 {{{\left( {1 - s} \right)}^{\alpha - 1}}f\left( {s, } \right.} }\\ {\left. {u\left( s \right)} \right){\rm{d}}s = \left\| {Au} \right\|, } \end{array} $

所以A:PP连续.由Arzela-Ascoli定理易证A:PP是全连续的.

首先,对任意uP,由(2.1)式和(2.2)式可知α(u)≤β(u), ‖u‖≤γ(u).若uP(γ, c),则‖u‖≤c.又由(H3)得

$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\gamma \left( {Au} \right) = \mathop {\max }\limits_{t \in \left[{0, {t_3}} \right] \cup \left[{1-{t_3}, 1} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s \le }\\ {c\alpha \mathit{\Gamma} \left( \alpha \right)\int_0^1 {G\left( {s, s} \right){\rm{d}}s} = c, } \end{array} $

因此,A:P(γ, c)P(γ, c).说明{uP(γ, θ, α, a, $ \frac{{{t_2}}}{{{t_1}}}a $, c):α(u)>a}≠∅,{uQ(γ, β, ψ, $ \frac{{2d}}{r} $, d, c):β(u) < d}≠∅.其次

(1)若uQ(γ, β, a, c)且$ \psi \left( {A\left( u \right)} \right) < \frac{a}{M} $, 则

$ \begin{array}{*{20}{l}} {\;\;\;\;\beta \left( {Au} \right) = \mathop {\max }\limits_{t \in \left[{1/r, 1-1/r} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s \le }\\ {M\mathop {\min }\limits_{t \in \left[{1/r, 1-1/r} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right){\rm{d}}s = M\psi \left( {Au} \right)} < a;} \end{array} $

(2)若uQ(γ, β, ψ, $ \frac{a}{M} $, a, c),由(H1)得

$ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\beta \left( {Au} \right) = \mathop {\max }\limits_{t \in \left[{1/r, 1-1/r} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s < }\\ {\frac{a}{{\mathit{\Gamma} \left( \alpha \right)\left( {1 - \frac{1}{r}} \right)\alpha - 1}}\mathop {\max }\limits_{t \in \left[{1/r, 1-1/r} \right]} \int_0^1 {G\left( {t, s} \right)} {\rm{d}}s = a;} \end{array} $

(3)若uQ(γ, α, b, c),且θ(A(u))> $ \frac{b}{m} $,则

$ \begin{array}{*{20}{l}} {\;\;\;\;\alpha \left( {Au} \right) = \mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s \ge m}\\ {\mathop {\max }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, u\left( s \right)} \right)} {\rm{d}}s = m\theta \left( {Au} \right) > b;} \end{array} $

(4)若uQ(γ, θ, b, $ \frac{b}{m} $, c),由(H2)得

$ \begin{array}{*{20}{l}} {\;\;\;\;\;\alpha \left( {Au} \right) = \mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} \int_0^1 {G\left( {t, s} \right)f\left( {s, } \right.} }\\ {\left. {u\left( s \right)} \right){\rm{d}}s > \frac{{\alpha b\mathit{\Gamma} \left( \alpha \right)}}{{1 - {{\left( {1 - {t_1}} \right)}^\alpha }}}\mathop {\min }\limits_{t \in \left[{{t_1}, {t_2}} \right] \cup \left[{1-{t_2}, 1-{t_1}} \right]} \int_0^1 {G\left( {t, s} \right) \cdot } }\\ {{\rm{d}}s = b;} \end{array} $

最后,由定理1.1可得,边值问题(0.1)至少有3个正解u1, u2, u3P(γ, c), 满足

α(u1) > b, β(u2) < a, α(u3) < b, β(u3) > a.

3 结论

本文研究了一类Caputo分数阶微分方程边值问题多解的存在性.证明时,将微分方程边值问题转化为积分方程,进一步转化为讨论积分算子不动点的问题,然后通过运用Leggett-Williams不动点定理该分数阶微分方程边值问题至少有3个正解存在的结果,其中格林函数的性质和非线性项的条件至关重要.

参考文献
[1]
PODLUBNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York: Academic Press, 1999.
[2]
ADOMIAN G, ELROD M, RACH R. A new approach to boundary value equations and application to a generalization of Airy's equation[J]. J Math Anal Appl, 1989, 140(2): 554-568. DOI:10.1016/0022-247X(89)90083-8
[3]
AGARWAL R P, MEEHAN M, O'REGAN D. Fixed Point Theory and Applications[M]. Cambridge: Cambridge University Press, 2001.
[4]
ABDELJAWAD T, BALEANU D. Fractional differen-ces and integration by parts[J]. Journal of Computational Analysis and Applications, 2011, 13(3): 574-582.
[5]
王勇, 韦煜明. 二阶非线性时滞微分方程边值问题正解的存在性[J]. 广西科学, 2012, 19(1): 40-43.
WANG Y, WEI Y M. Existence of positive solutions for boundary value problems of nonlinear second-order delay differential equations[J]. Guangxi Sciences, 2012, 19(1): 40-43.
[6]
严建明. 中立型微分方程的正解存在性及非振动解的渐近性[J]. 广西科学, 2008, 15(1): 7-9.
YAN J M. Existence of asymptotic behavious of positive solution of neutral differential equation[J]. Guangxi Sciences, 2008, 15(1): 7-9.
[7]
BAI Z B, LU H S. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. DOI:10.1016/j.jmaa.2005.02.052
[8]
BAI Z B, QIU T T. Existence of positive solution for singular fractional differential equation[J]. Applied Mathematics and Computation, 2009, 215(7): 2761-2767. DOI:10.1016/j.amc.2009.09.017
[9]
DOGAN A. On the existence of positive solutions for the second-order boundary value problem[J]. Applied Mathematics Letters, 2015, 49: 107-112. DOI:10.1016/j.aml.2015.05.004
[10]
XIE W Z, XIAO J, LUO Z G. Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions[J]. Applied Mathematics Letters, 2015, 41: 46-51. DOI:10.1016/j.aml.2014.10.014
[11]
OLDHAM K B, SPANIER J. The Fractional Calculus[M]. New York: Academic Press, 1974.
[12]
AVERY R I. A generalization of the Leggett-Williams fixed point theorem[J]. Math Sci Res Hot-Line, 1999, 3(7): 9-14.