植物凝集素的生物学功能与应用
王钰清, 邢雪聪, 柴许然, 杨耀宇, 王振义, 吴传芳, 鲍锦库     
四川大学生命科学学院, 四川成都 610064
摘要: 凝集素是一种非酶非免疫来源、能特异性结合糖的蛋白或糖蛋白,广泛分布于动植物及真菌中,具有凝集细胞、抗病毒、抗细菌、抗真菌及寄生虫,以及影响精卵识别和诱导肿瘤细胞凋亡或自噬等生理功能。在物种抗击外来伤害、免疫反应、信号转导等诸多生物过程中发挥重要作用。在所有凝集素中,植物凝集素分布最广,种类最多,功能多样。本文介绍了植物凝集素的研究背景,主要生物学功能及其在医学、分析测试方法和农业领域的应用,并在此基础上展望植物凝集素在医学、农业和生化领域的研究方向。
关键词: 凝集素    植物凝集素    生物学功能    应用    展望    
The Biological Function and Application of Plant Lectins
WANG Yuqing, XING Xuecong, CHAI Xuran, YANG Yaoyu, WANG Zhenyi, WU Chuanfang, BAO Jinku     
College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
Abstract: Lectin is a non-enzymatic and non-immune source, a protein or glycoprotein that specifically binds to sugars.It is widely distributed in animals, plants and fungi.And it has the physiological functions of agglutinating cells, antivirus, anti-bacterial fungi and parasites, as well as affecting the identification and inducing apoptosis or autophagy of tumor cells.Lectin plays an important role in the fight against foreign harm, immune response, signal transduction and many other biological processes.Among all lectins, plant lectins have the widest distribution, the largest variety, and various functions.This review introduces the research background, main biological functions of plant lectins.And it also shows the application of lectins in medicine, analytical testing methods and agriculture.Based on this, the future research directions of plant lectins in the fields of medicine, agriculture and biochemical research are prospected.
Key words: lectin    phytolectin    biological function    application    future research    
0 引言

植物凝集素存在于大多数植物中,能与特异碳水化合物可逆结合,是一种非酶非免疫来源的蛋白或糖蛋白[1]。植物凝集素的研究始于19世纪末,Peter Hermann Stillmark在1888年的博士学位论文中描述了从蓖麻植物(Ricinus communis)种子中分离出一种剧毒血凝素蓖麻毒蛋白(Ricin)[2]。随后不久Hellin H.在相思豆提取液中也发现了具有类似毒性的相思豆毒蛋白(Abrin)[3]。同时期Paul Ehrlich发现蓖麻毒蛋白和红豆因可以作为免疫学研究的模式抗原,具有很高的商业价值[4]。1936年,Summer和Howell[5]发现凝集素可以专一性地结合糖。1960年,Howell又发现在细胞有丝分裂过程中,植物凝集素起到促进作用[2]。1975年,Becker等首次解析出伴刀豆球蛋白(Concanavalin A)的三级结构[2]。目前为止已经发现1 000多种植物凝集素[2],不同的植物凝集素具有不同的分子结构和生物学活性,根据其结构特征以及糖结合特异性等不同分类方法,可以将植物凝集素分成不同的类别[1, 6-7](表 1)。

表 1 不同分类依据下的植物凝集素分类 Table 1 Classification of plant lectin according to different base for classification
分类依据
Base for classiffication
类型Types
亚基的结构特征
Structural characteristics of plant lectin subunits
部分凝集素、全凝集素、超凝集素、嵌合凝集素
Merolectins,hololectins,superlectin,chimerolectins
碳水化合物的结合特异性
Carbohydrate binding specificity
D-甘露糖或D-葡萄糖凝集素、N-乙酰氨基葡萄糖凝集素、N-乙酰氨基半乳糖凝集素、D-半乳糖凝集素、L-岩藻糖凝集素、N-乙酰神经氨酸(唾液酸)凝集素
D-mannose agglutinin or D-glucagglutinin,N-acetylglucosamine agglutinin,N- acetylgalactose agglutinin,D-galactose agglutinin,L-fucosine agglutinin,N-acetylneurine (sialic acid) agglutinin
序列相似性及其之间的进化关系
Sequence similarity and evolutionary relationship
双孢蘑菇家族、苋科植物家族、几丁质酶相关蛋白家族、蓝藻凝集素家族、欧矛家族、雪花莲家族、橡胶蛋白家族、木菠萝家族、豆科家族、具有赖氨酸基序的蛋白、烟草凝集素家族、蓖麻毒蛋白-B家族
Agaricus bisporus agglutinin (ABA),Amaranthin,Chitinase-related agglutinin (CRA),Cyanovirin,Euonymus europaeus,Galanthus nivalis agglutinin,Hevein,Jacalins,Legume lectin,Lysin motif,Nictaba,Ricin-B families

植物凝集素特异性的分子识别能力使其在植物防御、信号传导、免疫反应等各方面发挥了重要作用。并且由于其特殊的糖及糖复合物的结合特性,使得其具有细胞凝集、抗病毒、抗真菌、抗寄生虫、诱导细胞凋亡或自噬等能力,在农业、医学以及生化检测等方面有着广泛的科研应用前景与商业价值。

1 植物凝集素的主要生物学功能 1.1 特异性的碳水化合物结合能力

植物凝集素最初被人类发现是由于其凝结血细胞造成凝血毒性,随后的研究揭示了其凝集细胞的作用机制:植物凝集素通常具有两个或两个以上的糖结合位点,可以同时与多个细胞表面的糖受体结合,使原本游离的单细胞凝集成团(如精子、淋巴细胞、细菌、真菌等)[8-9]。植物凝集素本身不具有催化活性,但是其特异结合单糖或寡聚糖的能力[10]使其可以结合在可溶的碳水化合物,或者带有糖链结构的糖蛋白或糖脂等糖缀合物的糖残基上,从而引发一系列的下游级联反应[11]。植物凝集素与受体糖的结合具有以下特性:(1)植物凝集素对识别的糖分子种类和构象具有特异性(如蓖麻毒素只与含D-半乳糖的凝集素受体结合);(2)植物凝集素对识别的糖分子受体结合位点周围的结构具有特异性,即与植物凝集素结合的受体糖分子结合位点的大小、形状、在糖链中的位置以及糖苷键的类型都会影响植物凝集素与受体糖分子的结合;(3)植物凝集素与糖的作用是动态的,即随着细胞发展阶段的不同,细胞膜上植物凝集素的结合位点、种类和数量都会发生变化。

1.2 广泛的抗虫活性

植物凝集素对鞘翅目、双翅目、鳞翅目、膜翅目、等翅目和同翅目等多种不同种类的昆虫都具有杀伤作用[12-13],尽管尚不完全清楚植物凝集素杀虫作用的确切机制,但许多研究表明,植物凝集素的碳水化合物识别特性参与了这种作用的介导[13]。植物凝集素与昆虫的肠道周围营养层结构或肠道中部的几丁质结构相互作用从而发挥其毒性,抑制消化吸收,使得昆虫无法获得营养,从而导致其死亡[14]。也有其他的报道表明,植物凝集素还可以通过减少昆虫食量、干扰昆虫血淋巴中存在的内源性凝集素作用、抑制细胞增殖等方式对昆虫造成伤害[15-16]。不论植物凝集素究竟如何发挥其毒性,都必须规避消化酶对其的降解,并显示对昆虫肠道中同化蛋白的抗性,这些与植物凝集素结合昆虫肠道糖缀合物的能力密不可分[13]

此外,植物凝集素还具有抗寄生虫活性。目前有报道称少数几种植物凝集素具有抗寄生虫活性,如木菠萝素可以用于治疗克氏锥虫的感染[17],其通过与寄生虫中存在的特定碳水化合物结合,从而对该碳水化合物的生物过程造成干扰[18]

1.3 独特的抗细菌、抗真菌、抗病毒活性

除了杀虫特性外,植物凝集素还对多种细菌、真菌和病毒具有抗性。植物凝集素通过结合在微生物入侵的作用位点,与微生物细胞膜表面的糖组分相互作用来达到抑制微生物粘附、迁移或生长的作用[19],尽管凝集素不能改变膜的结构和渗透性,或阻断微生物入侵细胞的过程,但它们通过对微生物凝集和固定化等方式来辅助宿主杀灭这些侵入的微生物[13]

植物凝集素抗真菌活性主要通过与真菌表面的几丁质和其他聚糖结合影响真菌的存活或其他生命活动,从而表现出杀菌作用。如植物凝集素附着于菌丝后,影响养分吸收和孢子萌发[13, 20];植物凝集素的结合还可引起壳质在细胞壁中的合成或沉积[21]。同时,植物凝集素还可以引起菌丝的膨大,细胞空泡化以及菌丝细胞壁的溶解,增加真菌对渗透压等各种胁迫条件的敏感性[20-22]

植物凝集素对病毒的抵抗活性主要通过结合病毒包膜糖蛋白上存在的聚糖,阻止其传播和渗透进入宿主细胞[23-24]。此外,植物凝集素还可以通过交联病毒的表面聚糖,阻止其与其他共受体相互作用。不同的植物凝集素具有不同的抗病毒活性及能力,这取决于其碳水化合物结合特异性[25-26]

1.4 潜在应用前景的抗肿瘤活性

关于植物凝集素能够诱导哺乳动物细胞,特别是肿瘤细胞凋亡的报道可以追溯至20世纪90年代,植物凝集素通过Caspase途径或线粒体途径诱导细胞凋亡和自噬来达到抗肿瘤活性的目的[13],抑制肿瘤血管生成[27]或阻断细胞周期[28]等方式也有报道。近年来关于植物凝集素抗肿瘤活性的研究主要集中于应用方面,在肿瘤检测、靶向载体、免疫佐剂等方面都展现出优秀的应用前景,而关于作用机理的研究大多集中在10年前(表 2)。

表 2 主要植物凝集素的抗肿瘤活性研究统计 Table 2 Statistics of anticancer activity of major phytolectins
类别
Class
名称
Name
细胞系
Cell line
凋亡活自噬途径
Apoptotic or autophagic pathways
报道时间
Published time
豆科植物凝集素
Legume lectin
伴刀豆蛋白A
Concanavalin A (Con A)
人黑色素瘤细胞A375
Human melanoma cell A375
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[29]
人白血病细胞HL-60、人急性淋巴细胞白血病细胞Molt4
Human leukemia cell HL-60 and acute lymphoblastic cell Molt4
线粒体膜电位途径
Collapse of mitochondrial potential
2012[30]
刀豆蛋白Br
Canavalia brasilien- sis (ConBr)
人白血病细胞Molt-4和HL-60细胞系
Human leukemia cell Molt-4 and cell line HL-60
线粒体膜电位途径
Collapse of mitochondrial potential
2012[30]
大豆凝集素
Soybean agglutinin (SBA)
人组织细胞淋巴瘤细胞U937、急性早幼粒白血病细胞HL60
Human cultured monocyte-like cell line U937, human leukaemia cell HL60
抑制生长和DNA合成
Reduced the growth and DNA synthesis
2001[28]
苦参凝集素
Sophora flavescens lectin (SFL)
道尔顿氏淋巴瘤(DL)携带小鼠
Dalton's lymphoma (DL) bearing mice
活性氧依赖凋亡途径
ROS-dependent apoptosis pathway
2014[31]
豌豆凝集素
Pisum sativum agglutinin (PSA)
人宫颈癌细胞HeLa
Human cervical cancer cell HeLa
Caspase依赖的死亡受体途径
Caspase-dependent apoptosis mechanism
2008[32]
艾氏腹水癌细胞
Ehrlich ascites carcinoma cell
G2/M期细胞周期阻断,诱导凋亡途径
G2/M cell cycle block,and induced apoptosis pathway
2013[33]
菜豆凝集素
Phaseolus vulgaris agglutinin (PHA)
人乳腺癌细胞MCF-7
Human breast cancer cell MCF-7
死亡受体依赖的凋亡途径
Death receptor-mediated apoptosis pathway
2010[34]
相思子凝集素
Abrus agglutinin (AGG)
道尔顿淋巴瘤
Dalton's lymphoma tumor model
降低Bcl-2和Bax蛋白的表达比例,释放细胞色素c激活caspase-3
Apoptosis was mediated by reduction in ratio of Bcl-2 and Bax protein expression, and activation of caspase-3 through release of cytochrome-c
2008[35]
人肝癌细胞HepG2和人角质形成细胞HaCaT
Human hepatoma cell HepG2 and the immortalized human keratinocyte cell HaCaT
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2014[36]
人脐静脉内皮细胞HUVECs和人乳腺癌细胞MDA-MB-231
Human umbilical vein endothelial cell HUVECs and human breast cancer cell MDA-MB-231
活性氧依赖凋亡途径
ROS-dependent apoptosis pathway
2016[37]
人咽鳞癌细胞FaDu
Human pharyngeal squamous cancer cell FaDu
活性氧依赖凋亡途径
ROS-dependent apoptosis pathway
2017[38]
人宫颈癌细胞HeLa
Human cervical cancer cell HeLa
通过活性氧的产生诱导细胞凋亡信号,降低Bcl-2/Bax比值,从而诱导线粒体通透性转变,进而激活caspase-3
Induced the apoptosis signal via generation of reactive oxygen species and decrease in the Bcl-2/Bax ratio thereby inducing mitochondrial permeability transition with consequent activation of caspase-3
2008[39]
黄芪凝集素
Astragalus mong- holicus lectin (AML)
人宫颈癌细胞系HeLa、人成骨样细胞系MG63、人白血病细胞系K562
Human cervical carcinoma cell line (HeLa), human osteoblast-like cell line (MG63) and human leukemia cell line (K562)
细胞周期阻断
Cell cycle arrest
2009[40]
荷包豆凝集素
Phaseolus coccineus L.lectin (PCL)
鼠纤维肉瘤细胞L929
Mouse fibrosarcoma cell L929
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[41]
鼻咽癌细胞系HONE1
Nasopharyngeal carcinoma cell line HONE1
细胞周期阻滞和外源凋亡途径
Cell cycle arrest and extrinsic apoptosis pathway
2016[42]
白芸豆凝集素
White kidney bean lectin (WKBL)
人肝癌细胞HepG2、人乳腺癌细胞MCF7和肝细胞WRL68
Human hepatoma cell HepG2, human breast cancer cell MCF7 and hepatocytes WRL68
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2016[42]
花生凝集素
Peanut agglutinin (PNA)
人宫颈癌细胞HeLa和道尔顿淋巴瘤小鼠模型
Human cervical cancer cell HeLa and Dalton's lymphoma (DL) bearing mice model
活性氧依赖凋亡途径
ROS-dependent apoptosis pathway
2014[43]
百脉根凝集素
Lotus corniculatus lectin (LCL)
人急性髓性白血病THP-1
Human leukemic cancer cell THP-1
细胞周期阻断
Cell cycle arrest
2013[44]
人肝癌细胞Hep3B
Human hepatocellular carcinomas cell Hep3B
活性氧(ROS)显著增加,线粒体膜丢失。线粒体过渡渗透率剧变(MTP)、Bax易位、细胞色素c释放、caspase-3活性和PARP降解
Significant increase in reactive oxygen species (ROS) and loss of mitochondrial membrane potential rapid changes in mitochondrial transition permeability (MTP), Bax translocation, cytochrome c release, caspase-3 activity, and PARP degradation
2004[45]
Ⅱ型核糖体失活蛋白
Type Ⅱ ribosome inactivating protein
槲寄生凝集素
Mistletoe lectin (ML)
人唾液腺肿瘤细胞A253
Human salivary adenoma tumor cell A253
通过活化caspase-3诱导凋亡细胞死亡,通过转录下调hTERT抑制端粒酶活性
Activation of caspase-3 and the inhibition of telomerase activity through transcriptional down-regulation of hTERT
2004[46]
CLY/HT-29 下调特定miRNA
Down regulated specific miRNA
2010[47]
人外周血单核细胞
Human peripheral blood monouclear cell (PBMC)
Caspase和MAPK依赖途径
Caspase-dependent pathway and MAPK-dependent pathway
2011[48]
人白血病T淋巴细胞Jurkat、B淋巴细胞BJAB
Human leukemic T lymphocyte Jurkat and B lymphocyte BJAB
不依赖受体的线粒体途径以及Caspase依赖的凋亡途径
Receptor-independent mitochondria-controlled apoptosis pathway and caspase-dependent apoptosis pathway
2018[49]
人肝癌细胞SMMC-7721
Human hepatoma cell SMMC-7721
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2012[50]
米糠凝集素
Rice bran agglutinin (RBA)
人单核细胞白血病细胞U937
Human monoblastic leukemia cell U937
细胞周期阻断及Caspase依赖的凋亡途径
Antiproliferative activity and caspase-dependent apoptosis pathway
2001[51]
苦瓜凝集素
Momordica charantia lectin (MCL)
鼻咽癌细胞CNE-1和CNE-2
Nasopharyngeal carcinoma (NPC) cells CNE-1 and CNE-2
G(1)期细胞周期阻断,线粒体损伤,Caspase和MAPK途径
G(1)-phase arrest, and mitochondrial injury, caspase-dependent pathway and MAPK-dependent pathway
2012[52]
蓖麻毒蛋白
Ricin
霍奇金淋巴瘤细胞L540
Human Hodgkin's lymphoma-derived cell line L540
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[53]
几丁质结合凝集素
Chitin-binding lectin
小麦胚芽凝集素
Wheat germ agglutinin (WGA)
F-344大鼠结肠癌
Colon carcinogenesis in F-344 rats
减少肿瘤数量
Reduce the number of tumors
2001[54]
马铃薯凝集素
Solanum tuberosum lectin (STL)
人骨髓白血病细胞系U937
Human myeloid leukaemia cell line U937
抗增殖活性
Antiproliferative activity
2014[55]
雪花莲类似凝集素
Galanthus nivalis agglutinin (GNA)
大蒜凝集素
Allium sativum L-lectin (ASL)
人组织细胞淋巴瘤细胞U937、急性早幼粒白血病细胞HL-60
Human cultured monocyte- like cell line U937, human leukaemia cell HL-60
抑制生长和DNA合成
Reduced the growth and DNA synthesis
2001[28]
黄精凝集素
Polygonatum cyr- tonema lectin (PCL)
人宫颈癌细胞HeLa
Human cervical cancer cell HeLa
凋亡途径
Apoptosis pathway
2008[56]
人类黑色素瘤细胞A375
Human melanoma cell A375
线粒体介导的ROS-p38-p53途径
Mitochondria-mediated ROS- p38-p53 pathway
2008[57]
人非小细胞肺癌细胞A549
Human lung adenocarcinoma cell A549
活性氧介导MAPK和NF -κB激活
Reactive oxygen species mediated MAPK and NF-κB activation
2016[58]
金缕梅凝集素
Lycoris aurea agglutinin (LAA)
人乳腺癌细胞MCF-7
Human breast cancer cell MCF-7
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[59]
人非小细胞肺癌细胞A549
Human lung adenocarcinoma cell A549
G2/M细胞周期阻断以及抑制PI3K-Akt存活途径
G2/M cell cycle arrest and inhibiting PI3K-Akt survival pathway
2013[60]
麦冬凝集素
Ophiopogon japonicus lectin (OJL)
人乳腺癌细胞MCF-7
Human breast cancer cell MCF-7
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[59]
羊耳蒜凝集素
Liparis noversa lectin (LNL)
人乳腺癌细胞MCF-7
Human breast cancer cell MCF-7
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2009[59]
玉竹凝集素
Polygonatum odor- atum lectin (POL)
人非小细胞肺癌细胞A549
Human non-small cell lung cancer A549 cells
抑制Akt-NF-κB通路以及活性氧依赖凋亡途径
Inhibiting Akt-NF-κB pathway and ROS-related apoptosis pathway
2014[61]
鼠纤维肉瘤细胞L929
Murine fibrosarcoma cell L929
增加FasL和FADD相关蛋白水平,导致caspase-8活化、线粒体跨膜电位崩溃和细胞色素c释放,导致caspase-9和caspase-3活化
Increased the levels of FasL and Fas-Associated protein with Death Domain (FADD) proteins and resulted in caspase-8 activation,mitochondrial transmembrane potential collapse and cytochrome c release, leading to activations of caspase-9 and caspase-3
2009[62]
木菠萝凝集素
Jacalin
面包树果实凝集素
Frutalin (FTL)
人宫颈癌细胞HeLa
Human cervical cancer cell HeLa
细胞毒性
Cytotoxic effects
2011[63]
香蕉凝集素
Musa acuminata (Del Monte banana) lectin (BanLec)
鼠白血病细胞L1210
Leukemia cell L1210
死亡受体介导凋亡途径
Death receptor-mediated apoptosis pathway
2009[64]
人肝癌细胞Hep3B
Human hepatoma cell Hep3B
死亡受体介导凋亡途径
Death receptor-mediated apoptosis pathway
2009[64]
桑叶凝集素
Morus alba leaf lectin (MLL)
人乳腺癌细胞MCF-7
Human breast cancer cells MCF-7
抑制纤维连接蛋白介导的整合素-FAK信号以及Ras和P38 MAPK的激活
Inhibiting fibronectin mediated integrin-FAK signaling through ras and activation of P38 MAPK
2017[65]
菠萝蜜凝集素
Artocarpus hetero- phyllus (Jackfruit) lectin (ArtinM)
白血病细胞系NB4,K562,U937
leukemia cell lines NB4, K562, U937
细胞生长抑制和线粒体膜电位破坏
Cell growth suppression and disruption of mitochondrial membrane potential
2011[66]
单子植物甘露糖结合凝集素
Monad man- nose binding lectin
半夏凝集素
Pinellia ternata agglutinin (PTA)
人肝癌细胞Bel-7404
Human hepatoma cell Bel-7404
细胞毒性
Cytotoxicity
2014[67]
川木通凝集素Clematis montana lectin (CML) 鼠纤维肉瘤细胞L929
Murine fibrosarcoma cell L929
Caspase依赖的凋亡途径
Caspase-dependent apoptosis pathway
2014[68]

1.5 良好的免疫活性

先天免疫系统是抵御各种病原体感染的第一道防线。该系统由少数蛋白质和某些吞噬细胞组成,这些吞噬细胞识别特定的病原相关模式分子(PAMPs)引发免疫反应。宿主先天免疫的激活是机体对任何病原体产生特异性免疫的前提。植物凝集素作为识别这些病原相关模式分子的识别受体(PRRs),在植物防御中发挥着重要作用,同时在动物体内也可以作为良好的先天免疫调节剂。它们能够调节细胞因子的分泌和其他免疫介质的产生,例如活性氧(ROS)和活性氮中间体(RNI),以提高宿主抵抗微生物感染的防御能力[69-70]

植物凝集素介导的免疫活性可以通过以下两种方式表现出来:(1)植物凝集素通过直接结合在细菌细胞表面,抑制细菌与宿主细胞的结合。(2)植物凝集素结合到免疫细胞表面,诱导信号转导,激活免疫反应[71]。这些植物凝集素具有增强免疫细胞吞噬活性的能力,从而抵抗细菌感染后细胞因子的产生[72]。如Con A在鼠类巨噬细胞中可以通过JNK、p38和NF-κB依赖性信号传导途径增加各Toll样受体(TLR)的表达[70-73]。ConBr在鼠脾细胞中诱导了IL-2、IL-6和IFN-γ等细胞因子的产生,但却抑制了IL-10,并产生了NO[74],它还在体内激活淋巴细胞,引起凋亡,并且在外周血单核细胞(PBMC)中产生TNF-α,并从肥大细胞中释放组胺[75-76]。这些都显示其具有良好的免疫活性。

2 植物凝集素的应用 2.1 植物凝集素在医学中的应用

关于植物凝集素在医学中的应用,报道最多的是抗肿瘤药物的相关研发,目前主要集中在将植物凝集素作为免疫佐剂或载体制剂方面。在药物研发中,利用植物凝集素与糖链特异性结合的特性,可以使药物靶向结合到相应的肿瘤细胞表面[77]。许多肿瘤组织中都存在异常的糖基化,从而可以将载有抗癌药物的纳米颗粒表面连接上植物凝集素或者抗体,进一步将药物靶向结合到肿瘤细胞表面[77],以增强对肿瘤细胞的杀伤力,减少副作用[77-78]

除了在载体制剂中的应用外,许多植物凝集素在体外实验中都有直接抑制肿瘤细胞生长的作用。研究发现槲寄生凝集素可以通过下调Bcl-2, 调节细胞色素C的释放,通过线粒体途径引起胆管癌细胞ICC-9810的细胞凋亡[79]。人乳腺癌细胞系(MCF-7, 231)以及人肝癌细胞系(HepG2)在菜豆凝集素的作用下,生长状况也受到抑制,且具有剂量依赖性[80]。一种从曲序南星(Arisaema tortuosum)中提取的凝集素,也被证实对人癌细胞系HT29、SiHa和OVCAR-5有抑制作用[81]

同样地,由于肿瘤细胞中存在异常糖基化,这些异常的糖蛋白可以作为肿瘤的生物标志物,利用植物凝集素与糖链特异性结合的特点,可以开发检测这些肿瘤生物标志物的试剂[78]。植物凝集素芯片是植物凝集素研究发展的产物,它可以快速且灵敏地对各种聚糖进行高通量的检测。芯片表面上固定有不同的已知植物凝集素,这些植物凝集素会与待测样品中的寡糖特异性结合,对与样品结合后的芯片进行扫描,可以得到点阵数据,通过这些数据和已知植物凝集素的寡糖结合特异性进行分析,从而推断出样品中寡糖的组成[82]。植物凝集素的应用还可以为临床上疾病的诊断提供证据。例如由于肝细胞癌患者的唾液糖蛋白糖链发生改变,因此特异性结合岩藻糖基的凝集素AAL对肝癌患者的唾液糖蛋白结合能力减弱,由此可以区分肝细胞癌患者和乙肝患者或者乙肝后肝硬化患者[83]

除在肿瘤医学方面的作用外,植物凝集素在其他医学方面也显示出重要作用。在抗病毒方面,研究表明,不同的植物凝集素可以抑制HIV的侵入、逆转录或是整合等生物学过程,从而达到抗HIV的作用[84]。针对外源植物凝集素在临床应用中可能面临的免疫原性和促淋巴细胞有丝分裂活性等副作用,可采用定点突变技术获得低免疫原性的凝集素[84]。在生殖医学方面,植物凝集素也展现出避孕和抗早孕的作用,有文献证实,植物凝集素可以导致精子在体外相互凝集,失去运动能力,从而阻止受精[85]。有学者认为,植物凝集素可以通过干扰精子与透明带的识别结合,干扰胚胎着床以及使胚胎发育停止或退化等机制来达到避孕效果[86]。植物凝集素还可以作为免疫调节佐剂添加进疫苗中,以增强和指导针对特定疾病的免疫反应[87]。同时一些植物凝集素(如SBA、PNA、Con A和PHA等)还可以与巨噬细胞或树突状细胞上的糖基化TLR受体相互作用,因此可以作为TLR激动剂使用[88-89]

2.2 植物凝集素在分析测试方法中的应用

近年来,植物凝集素已广泛用于结构和功能糖组学领域。与仪器技术相比,植物凝集素的特异性和敏感性使其进一步成为生化检测的重要工具[90]

2.2.1 酶联凝集素测定(ELLA)技术

酶联凝集素测定法可以用于检测未固定细胞表面的特定碳水化合物单元。该测定采用酶联免疫吸附测定(ELISA)的原理,唯一的不同就是将ELISA中的抗体替换为植物凝集素。因为植物凝集素对寡糖的不同结构具有很高的特异性,因此ELLA技术可用于检测各种组织样品中的寡糖表达谱。该技术使用样本较少且具有高通量潜力,易于操作,成本低[91]

2.2.2 凝集素印迹技术

凝集素印迹技术是蛋白质印迹技术的扩展,其中唯一的不同就是将蛋白质印迹技术中的抗体替换为植物凝集素。使用不同的聚糖特异性凝集素探针检测聚糖结构,具有高特异性、高敏感性,而且可以非常方便地筛选复杂蛋白质样品[92]

2.2.3 固定凝集素亲和色谱技术

固定化凝集素亲和色谱技术是一种可用于糖蛋白分离和富集的方法。植物凝集素的固定化和糖蛋白的结合洗脱是这一技术的关键。使用质谱分析可以鉴定许多蛋白质的特异性糖基化位点[93]

2.2.4 基于凝集素阵列的聚糖谱分析

生物识别元件的研究为基于凝集素阵列的聚糖谱分析技术打下基础[94]。凝集素阵列技术可以快速灵敏地表征糖结合物上的碳水化合物。通过使用固定在固相支持物上的高密度植物凝集素,可以检测单个样品中糖蛋白或糖脂中碳水化合物含量的不同[91]

2.2.5 流式细胞仪

流式细胞仪是一项强大的技术,能够对混合物中不同类型细胞的结构特征进行定量,而某些类型细胞的独特细胞表面聚糖结构,可以通过使用经过化学修饰的植物凝集素来辅助流式细胞仪进行表征[95],该技术也可用于细胞分选。

2.2.6 电化学阻抗谱技术(EIS)

通过将植物凝集素用作分子识别元件而开发的电化学阻抗谱技术,具有灵敏度好、特异性高、稳定性好等特点,可用于制成便携的生物传感系统,是一种通过识别碳水化合物来进行分子表征、检测表面改性、生物识别的有效工具[96]。该技术可以方便地鉴定区分甲胎蛋白[97]

2.3 植物凝集素在农业领域的应用 2.3.1 转凝集素基因获得抗性植株

很多植物本身含有凝集素,而且在对抗捕食者的过程中拥有不俗的效果,而通常情况下植物内源凝集素对其自身没有影响,只是对昆虫具有毒性。因此可以通过转基因的方法,将某些特定的植物凝集素导入到其他植物中使其获得抗虫特性。其中,豆科植物一直是凝集素的最大贡献物种,例如将从豆科植物国槐中克隆的凝集素基因转入到烟草中,可以使烟草对小菜蛾的抗性达到62.2%,同时大豆凝集素基因lec-s的烟草实验也证明其对甜菜夜蛾有很大的抑制作用。类似地,凝集素也可以被应用到水稻、油菜、马铃薯、甜菜、烟草、小麦番茄中去[98-99],以增强特定物种对多种菌株的抗菌活性。除直接转基因到其他物种中,凝集素转基因制品也可以用于帮助植株抵御病虫害,例如利用pET-28a质粒构建豆科凝集素Le4基因的原核表达载体,再将得到的凝集素产物涂在小麦叶片上,可以很好地抵御蚜虫的侵扰[100]

2.3.2 转凝集素基因提高生物固氮能力

根瘤菌是一种专一性寄生菌,可以辅助豆科植物固氮。而豆科植物的凝集素可以促进根瘤菌结合附着在含有豆科凝集素的植物根部[101],在共生固氮中具有引导作用[102-103]。如利用基因工程技术将豇豆凝集素基因(psl)转导入白三叶草根中之后,对豇豆根毛专一结合的根瘤菌也可以结合到白三叶草根中。这为将根瘤菌定植到其他非豆科植物,引导共生固氮提供思路[104]。将豆科凝集素基因转入拟南芥、烟草、苜蓿、水稻、沙棘等植物均可以使其成功结瘤或长出瘤状类似物[105],证明凝集素引导共生固氮具有普适性。因此转凝集素基因获得固氮植株在减少化肥施用、增加作物产量、提升效率和保护环境等方面都具有很好的前景。

3 展望

植物凝集素具有特异性识别糖链的作用,在医学、农学等多个领域都有大量的研究成果,具有广泛的研究前景。

在医学领域,植物凝集素主要被用于开发诊断试剂或芯片、靶向药物载体、免疫佐剂等方面,具有很高的经济及研究价值,但不可否认的是,在对肿瘤细胞有抑制作用的同时,有些植物凝集素对正常的细胞也有很强的毒性[2]。因此,将植物凝集素作为药物前体进行修饰和改造,从而研发新药将成为未来的研究热点。

在农业上,利用基因工程将凝集素基因转入农作物中,从而构建出抗虫抗病或是有固氮能力的转基因植物已经成为研究的热点,这将会对未来农业发展、解决粮食短缺和环境污染等问题做出重大贡献。利用原核表达系统获得转基因凝集素产物并涂抹到植株表面,可以使植株在非转基因状态下获得相应的抗病虫害或固氮效果,具有一定的研究价值,但关于涂抹凝集素失效时间、施用成本等方面还有待改进。

在生化研究方面,植物凝集素已广泛用于结构和功能糖组学领域。与仪器技术相比,植物凝集素的特异性和敏感性使其具有不可替代的优势,利用植物凝集素开发或改进新型生化检测方法,对糖生物学研究的深入具有深远的意义。

植物凝集素作为分布最广、种类最多的一种凝集素,是一座天然的宝库,无论是对其本身进行深入研究还是进行修饰改造都有着诱人的前景,相信关于凝集素的研究一定会进一步为人类的科技进步和社会发展做出贡献。

参考文献
[1]
VAN DAMME E J M, PEUMANS W J, BARRE A, et al. Plant lectins:A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles[J]. Critical Reviews in Plant Sciences, 1998, 17(6): 575-692.
[2]
孙册, 朱政, 莫汉庆. 凝集素[M]. 北京: 科学出版社, 1986.
[3]
董任瑞. 关于Lectin译名的商榷[J]. 生命的化学, 1987(5): 33.
[4]
李凤玲, 徐培洲, 肖祎, 等. 植物凝集素及其在抗虫基因工程中的应用[J]. 安徽农业科学, 2006, 34(3): 430-432, 439.
[5]
SUMNER J B, HOWELL S F. Identification of hemagglutinin of jack bean with concanavalin A[J]. Journal of Bacteriology, 1936, 32(2): 227-237.
[6]
冷艳, 孙宪迅, 王璐, 等. 植物凝集素检测方法的研究进展[J]. 江汉大学学报:自然科学版, 2018, 46(4): 305-309.
[7]
JIANG S Y, MA Z G, RAMACHANDRAN S. Evolutionary history and stress regulation of the lectin superfamily in higher plants[J]. BMC Evolutionary Biology, 2010, 10: 79-102.
[8]
DA SILVA J D F, DA SILVA S P, DA SILVA P M, et al. Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities[J]. International Journal of Biological Macromolecules, 2019, 126: 291-297.
[9]
DURFEY C L, SWISTEK S E, LIAO S F, et al. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa[J]. Journal of Animal Science and Biotechnology, 2019, 10(2): 14-25.
[10]
GOLDSTEIN I J, HUGHES R C, MONSIGNY M, et al. What should be called a lectin?[J]. Nature, 1980, 285(5760): 66.
[11]
BARRE A, BOURNE Y, VAN DAMME E J, et al. Overview of the structure-function relationships of mannose-specific lectins from plants, algae and fungi[J]. International Journal of Molecular Sciences, 2019, 20(2): 254-302.
[12]
SANTOS A F S, DA SILVA M D C, NAPOLEĀO T H, et al. Lectins:Function, structure, biological properties and potential applications[J]. Curr Top Pept Protein Res, 2014, 15: 41-62.
[13]
IRLANDA L D, ANA G P, LUZ V M. Legume lectins:Proteins with diverse applications[J]. International Journal of Molecular Sciences, 2017, 18(6): 1242-1259.
[14]
WALSKI T, VAN DAMME E J M, SMAGGHE G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum[J]. Journal of Insect Physiology, 2014, 70: 94-101.
[15]
FITCHES E, GATEHOUSE A M R, GATEHOUSE J A. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials[J]. Journal of Insect Physiology, 1997, 43(8): 727-739.
[16]
YU L G, FERNIG D G, WHITE M R H, et al. Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import[J]. Journal of Biological Chemistry, 1999, 274(8): 4890-4899.
[17]
JANDÚ J J B, NETO R M, ZAGMIGNAN A, et al. Targeting the immune system with plant lectins to combat microbial infections[J]. Frontiers in Pharmacology, 2017, 8: 671.
[18]
IORDACHE F, IONITA M, MITREA L I, et al. Antimicrobial and antiparasitic activity of lectins[J]. Current Pharmaceutical Biotechnology, 2015, 16(2): 152-161.
[19]
BREITENBACH BARROSO COELHO L C, MAR-CELINO DOS SANTOS SILVA P, FELIX DE OLIVEIRA W, et al. Lectins as antimicrobial agents[J]. Journal of Applied Microbiology, 2018, 125(5): 1238-1252.
[20]
KAUSS H. Lectins and their physiological role in slime molds and in higher plants[M]. Berlin Heidelberg: Springer, 1981.
[21]
SELITRENNIKOFF C P. Antifungal proteins[J]. Appl Environ Microbiol, 2001, 67(7): 2883-2894.
[22]
CIOPRAGA J, GOZIA O, TUDOR R, et al. Fusarium sp.growth inhibition by wheat germ agglutinin[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1428(2/3): 424-432.
[23]
BARTON C, KOUOKAM J C, LASNIK A B, et al. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(1): 120-127.
[24]
AKKOUH O, NG T B, SINGH S S, et al. Lectins with anti-HIV activity:A review[J]. Molecules, 2015, 20(1): 648-668.
[25]
MVLLER W E, RENNEISEN K, KREUTER M H, et al. The D-mannose-specific lectin from Gerardia savaglia blocks binding of human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro[J]. J Acquir Immune Defic Syndr, 1988, 1(5): 453-458.
[26]
SABRINA L, CAROLE B. Griffithsin:An antiviral lectin with outstanding therapeutic potential[J]. Viruses, 2016, 8(10): 296-313.
[27]
YAU T, DAN X, NG C, et al. Lectins with potential for anti-cancer therapy[J]. Molecules, 2015, 20(3): 3791-3810.
[28]
KARASAKI Y, TSUKAMOTO S, MIZUSAKI K, et al. A garlic lectin exerted an antitumor activity and induced apoptosis in human tumor cells[J]. Food Research International, 2001, 34(1): 1-13.
[29]
LIU B, LI C Y, BIAN H J, et al. Antiproliferative activity and apoptosis-inducing mechanism of Concanavalin A on human melanoma A375 cells[J]. Archives of Biochemistry and Biophysics, 2009, 482(1/2): 1-6.
[30]
FAHEINA-MARTINS G V, DA SILVEIRA A L, CAVALCANTI B C, et al. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines[J]. Toxicology in Vitro, 2012, 26(7): 1161-1169.
[31]
PANDA P K, MUKHOPADHYAY S, BEHERA B, et al. Antitumor effect of soybean lectin mediated through reactive oxygen species-dependent pathway[J]. Life Sciences, 2014, 111(1/2): 27-35.
[32]
LIU Z, LIU B, ZHANG Z T, et al. A mannose-binding lectin from Sophora flavescens induces apoptosis in HeLa cells[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology, 2008, 15(10): 867-875.
[33]
KABIR S R, NABI M M, HAQUE A, et al. Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice[J]. Phytomedicine, 2013, 20(14): 1288-1296.
[34]
LAM S, NG T. First report of a haemagglutinin-induced apoptotic pathway in breast cancer cells[J]. Bioscience Reports, 2010, 30(5): 307-317.
[35]
BHUTIA S K, MALLICK S K, MAITI S, et al. Antitumor and proapoptotic effect of Abrus agglutinin derived peptide in Dalton's lymphoma tumor model[J]. Chemico-Biological Interactions, 2008, 174(1): 11-18.
[36]
MUKHOPADHYAY S, PANDA P K, DAS D N, et al. Abrus agglutinin suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death[J]. Acta Pharmacologica Sinica, 2014, 35(6): 814-824.
[37]
BHUTIA S K, BEHERA B, DAS D N, et al. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer[J]. International Journal of Cancer, 2016, 139(2): 457-466.
[38]
SINHA N, PANDA P K, NAIK P P, et al. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma[J]. Molecular Carcinogenesis, 2017, 56(11): 2400-2413.
[39]
BHUTIA S K, MALLICK S K, STEVENS S M, et al. Induction of mitochondria-dependent apoptosis by Abrus agglutinin derived peptides in human cervical cancer cell[J]. Toxicology in Vitro, 2008, 22(2): 344-351.
[40]
YAN Q, LI Y, JIANG Z, et al. Antiproliferation and apoptosis of human tumor cell lines by a lectin (AMML) of Astragalus mongholicus[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2009, 16(6/7): 586-593.
[41]
CHEN J, LIU B, JI N, et al. A novel sialic acid-specific lectin from Phaseolus coccineus seeds with potent antineoplastic and antifungal activities[J]. Phytomedicine, 2009, 16(4): 352-360.
[42]
CHAN Y S, XIA L, NG T B. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells[J]. International Journal of Biological Macromolecules, 2016, 85: 335-345.
[43]
MUKHOPADHYAY S, PANDA P K, BEHERA B, et al. In vitro and in vivo antitumor effects of Peanut agglutinin through induction of apoptotic and autophagic cell death[J]. Food and Chemical Toxicology, 2014, 64: 369-377.
[44]
RAFIQ S, MAJEED R, QAZI A K, et al. Isolation and antiproliferative activity of Lotus corniculatus lectin towards human tumour cell lines[J]. Phytomedicine, 2013, 21(1): 30-38.
[45]
KIM W H. Critical role of reactive oxygen species and mitochondrial membrane potential in Korean mistletoe lectin-induced apoptosis in human hepatocarcinoma cells[J]. Molecular Pharmacology, 2004, 66(6): 1383-1396.
[46]
CHOI S H, LYU S Y, PARK W B. Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt[J]. Archives of Pharmacal Research, 2004, 27(1): 68-76.
[47]
职润.槲寄生蛋白CM-1对结肠癌miR-135调节作用的研究[D].长春: 吉林大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10183-2010110824.htm
[48]
钱柳, 胡朝英, 黄秋愉, 等.槲寄生凝集素蛋白诱导肿瘤细胞凋亡的实验研究[C]//第五届全国中医药免疫学术研讨会暨环境·免疫与肿瘤防治综合交叉会议.2009. http://www.cnki.com.cn/Article/CJFDTotal-ZWXH200906010.htm
[49]
BANTEL H, ENGELS I H, VOELTER W, et al. Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis[J]. Cancer Research, 1999, 59(9): 2083-2090.
[50]
YANG X L, JIANG S, LIU Y H, et al. Recombinant VAA-I from Viscum album induces apoptotic cell death of hepatocellular carcinoma SMMC7721 cells[J]. Molecules, 2012, 17(10): 11435-11446.
[51]
MIYOSHI N, KOYAMA Y, KATSUNO Y, et al. Apoptosis induction associated with cell cycle dysregulation by rice bran agglutinin[J]. Journal of Biochemistry, 2001, 130(6): 799-805.
[52]
FANG E F, ZHANG C Z, NG T B, et al. Momordica charantia lectin, a type Ⅱ ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo[J]. Cancer Prevention Research, 2012, 5(1): 109.
[53]
POLITO L, BORTOLOTTI M, FARINI V, et al. Saporin induces multiple death pathways in lymphoma cells with different intensity and timing as compared to ricin[J]. The International Journal of Biochemistry and Cell Biology, 2009, 41(5): 1055-1061.
[54]
ZALATNAI A. Wheat germ extract inhibits experi-mental colon carcinogenesis in F-344 rats[J]. Carcinogenesis, 2001, 22(10): 1649-1652.
[55]
IMTIAJ H, FARHADUL I, YASUHIRO O, et al. Antiproliferative activity of cytotoxic tuber lectins from Solanum tuberosum against experimentally induced Ehrlich ascites carcinoma in mice[J]. African Journal of Biotechnology, 2014, 13(15): 1679-1685.
[56]
LIU B, HUANG J, LIU Y, et al. Apoptosis-inducing effect and structural basis of Polygonatum cyrtonema lectinand chemical modification properties on its mannose-binding sites[J]. Bmb Reports, 2008, 41(5): 369-375.
[57]
LIU B, CHENG Y, ZHANG B, et al. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway[J]. Cancer Letters, 2009, 275(1): 54-60.
[58]
LIU T, WU L, WANG D, et al. Role of reactive oxygen species-mediated MAPK and NF-κB activation in polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells[J]. The Journal of Biochemistry, 2016, 160(6): 315-324.
[59]
LIU B, PENG H, YAO Q, et al. Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities[J]. Phytomedicine, 2009, 16(6/7): 601-608.
[60]
LI C Y, WANG Y, WANG H L, et al. Molecular mechanisms of Lycoris aurea agglutinin-induced apoptosis and G2/M cell cycle arrest in human lung adenocarcinoma A549 cells, both in vitro and in vivo[J]. Cell Proliferation, 2013, 46(3): 272-282.
[61]
LI C Y, CHEN J, LY B M, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells[J]. PLoS ONE, 2014, 9(7).
[62]
LIU B, ZHANG B, MIN M W, et al. Induction of apoptosis by Polygonatum odoratum lectin and its molecular mechanisms in murine fibrosarcoma L929 cells[J]. Biochimica et Biophysica Acta General Subjects, 2009, 1790(8): 840-844.
[63]
OLIVEIRA C, NICOLAU A, TEIXEIRA J A, et al. Cytotoxic effects of native and recombinant frutalin, a plant galactose-binding lectin, on HeLa cervical cancer cells[J]. Journal of Biomedicine and Biotechnology, 2011, 2011: 1-9.
[64]
CHEUNG A H K, WONG J H, NG T B. Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity[J]. Phytomedicine, 2009, 16(6/7): 594-600.
[65]
JAYARAM S, GANESAN S, RAGHU K G, et al. Morus alba leaf lectin (mll) sensitizes MCF-7 cells to anoikis by inhibiting fibronectin mediated integrin-FAK signaling through ras and activation of P38 MAPK[J]. Frontiers in Pharmacology, 2017, 8: 34.
[66]
CARVALHO F C, SOARES S G, TAMAROZZI M B, et al. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line[J]. PLOS ONE, 2011, 6(11): e27892.
[67]
ZHOU W, GAO Y, XU S, et al. Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells[J]. Protein Expression and Purification, 2014, 93: 11-17.
[68]
BANGMIN L, BIN Z, WEI Q, et al. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin[J]. Acta Biochim Biophys Sin, 2014, 46(11): 923-934.
[69]
BARROSO C L C B, SANTOS S P M D, DE MENEZES L V L, et al. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017: 1-22.
[70]
DA SILVA LUÍS C N, COOREIA MARIA T S. Plant lectins and toll-like receptors:Implications for therapy of microbial infections[J]. Front Microbiol, 2014, 5: 20.
[71]
SOUZA M A, CARVALHO F C, RUAS L P, et al. The immunomodulatory effect of plant lectins:A review with emphasis on ArtinM properties[J]. Glycoconjugate Journal, 2013, 30(7): 641-657.
[72]
SILVA L C N D, ALVES N M P, CASTRO M C A B D, et al. Immunomodulatory effects of pCramoll and rCramoll on peritoneal exudate cells (PECs) infected and non-infected with Staphylococcus aureus[J]. International Journal of Biological Macromolecules, 2015, 72: 848-854.
[73]
SODHI A, TARANG S, KESHERWANI V. Concana-valin A induced expression of toll-like receptors in murine peritoneal macrophages in vitro[J]. International Immunopharmacology, 2007, 7(4): 454-463.
[74]
SILVA F D O, SANTOS P D N, MELO C M L D, et al. Immunostimulatory activity of ConBr:A focus on splenocyte proliferation and proliferative cytokine secretion[J]. Cell & Tissue Research, 2011, 346(2): 237-244.
[75]
CAVADA B, BARBOSA T, ARRUDA S, et al. Revisiting proteus:Do Minor changes in lectin structure matter in biological activity? lessons from and potential biotechnological uses of the diocleinae subtribe lectins[J]. Current Protein & Peptide Science, 2001, 2(2): 123-135.
[76]
LOPES F C, CAVADA B S, PINTO V P T, et al. Differential effect of plant lectins on mast cells of different origins[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(6): 935-941.
[77]
OBAID G, CHAMBRIER I, COOK M J, et al. Cancer targeting with biomolecules:A comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles[J]. Photochemical & Photobiological Sciences, 2015, 14(4): 737-747.
[78]
KIM Y S, YOO H S, KO J H. Implication of aberrant glycosylation in cancer and use of lectin for cancer biomarker discovery[J]. Protein & Peptide Letters, 2009, 16(5): 499-507.
[79]
高旭亮, 王佐权, 胡江波, 等. 槲寄生凝集素抗胆管癌的作用及机制研究[J]. 陕西医学杂志, 2016(2): 154-156.
[80]
金雯燕, 韦思雨, 李佳楠. 菜豆植物凝集素对肿瘤细胞增殖的抑制作用[J]. 科教导刊, 2016(26): 170-171.
[81]
DHUNA V, BAINS J S, KAMBOJ S S, et al. Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines[J]. Journal of Biochemistry & Molecular Biology, 2005, 38(5): 526-532.
[82]
李春辉, 何群. 凝集素芯片的研究现状[J]. 生命的化学, 2009, 29(3): 342-346.
[83]
李铮. 唾液糖蛋白糖链和肿瘤[J]. 中南医学科学杂志, 2018, 46(1): 1-5.
[84]
牛耀辉, 陈朝银, 赵声兰, 等. 凝集素及其抗HIV研究进展[J]. 云南化工, 2006, 33(6): 59-63.
[85]
王昌梅, 张丽芬, 杨明洁, 等. 白芸豆植物凝集素对不同物种精子的凝集作用与抗孕效果研究[J]. 中国计划生育学杂志, 2010, 18(5): 272-276.
[86]
王敏康, 王昌梅, 张丽芬. 植物凝集素在避孕与预防性传播疾病中的应用前景[J]. 生殖与避孕, 2009, 29(10): 670-675.
[87]
MOYLE P M. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines[J]. Biotechnology Advances, 2017, 35(3): 375-389.
[88]
SANDER V A, CORIGLIANO M G, CLEMENTE M. Promising plant-derived adjuvants in the development of coccidial vaccines[J]. Frontiers in Veterinary Science, 2019, 6: 1-15.
[89]
UNITT J, HORNIGOLD D. Plant lectins are novel toll-like receptor agonists[J]. Biochemical Pharmacology, 2011, 81(11): 1324-1328.
[90]
PIHÍKOVÁ D, KASÁK P, TKAC J. Glycoprofiling of cancer biomarkers:Label-free electrochemical lectin-based biosensors[J]. Open Chemistry, 2015, 13(1): 636-655.
[91]
HASHIM O H, JAYAPALAN J J, LEE C S. Lectins:An effective tool for screening of potential cancer biomarkers[J]. PeerJ, 2017, 5: e3784.
[92]
PHANG W M, TAN A A, GOPINATH S C B, et al. Secretion of N- and O-linked glycoproteins from 4T1 murine mammary carcinoma cells[J]. International Journal of Medical Sciences, 2016, 13(5): 330-339.
[93]
HAGE D S, ANGUIZOLA J A, BI C, et al. Pharmaceutical and biomedical applications of affinity chromatography:Recent trends and developments[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69: 93-105.
[94]
ANGELONI S, RIDET J L, KUSY N, et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins[J]. Glycobiology, 2005, 15(1): 31-41.
[95]
LAM S K, NG T B. Lectins:Production and practical applications[J]. Applied Microbiology and Biotechnology, 2011, 89(1): 45-55.
[96]
GROSSI M, RICCÒ B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization:A review[J]. J Sens Sens Syst, 2017, 6: 303-325.
[97]
CHEN P, LIU Y K, KANG X N, et al. Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray[J]. Journal of Cancer Research & Clinical Oncology, 2008, 134(8): 851-860.
[98]
杨微微, 杜娟, 陆晓菡, 等. 国槐凝集素基因的克隆及其功能[J]. 中国生物防治学报, 2019, 35(2): 301-306.
[99]
郭佩佩.大豆凝集素基因lec-s的克隆及转化烟草的研究[D].南京: 南京农业大学, 2012.
[100]
周英, 谢红卫, 刘长爱, 等. 豆科凝集素基因Le4的克隆及其表达产物对蚜虫的抗性[J]. 基因组学与应用生物学, 2016(12): 275-281.
[101]
SREEVIDYA V S, HERNANDEZ-OANE R J, SO R B, et al. Expression of the legume symbiotic lectin genes psl andgs52promotes rhizobial colonization of roots in rice[J]. Plant Science (Oxford), 2005, 169(4): 726-736.
[102]
熊维全, 万群. 植物凝集素及其在生物固氮中的作用[J]. 热带农业科技, 2005, 28(2): 21-26, 29.
[103]
OLDROYD G E D, DOWNIE J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology, 2008, 59(1): 519-546.
[104]
DÍAZ C L, LOGMAN T J J, STAM H C, et al. Sugar-binding activity of pea lectin expressed in white clover hairy roots[J]. Plant Physiology, 1995, 109(4): 1167-1177.
[105]
鲍锦库. 植物凝集素的功能[J]. 生命科学, 2011, 23(6): 533-540.