引用本文
  • 黄永中,刘焕文.带边界条件样条函数空间S21,1(mn(2))上的Lagrange插值[J].广西科学,2001,8(4):262-265.    [点击复制]
  • Huang Yongzhong,Liu Huanwen.Lagrange Interpolation of Bivariate Quadratic Splines S21,1(mn(2)) with Boundary Conditions[J].Guangxi Sciences,2001,8(4):262-265.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 327次   下载 327 本文二维码信息
码上扫一扫!
带边界条件样条函数空间S21,1(mn(2))上的Lagrange插值
黄永中, 刘焕文
0
(广西民族学院数学与计算机科学系, 南宁市西乡塘 530006)
摘要:
讨论非均匀(Ⅱ)型三角剖分mn(2)上二元二次样条空间的带边界条件子空间S21,1(mn(2))上的一类所谓支集中心型的Lagrange插值。运用矩阵方向图技术,证明当mn(2)满足所谓非降比剖分条件时相应的插值问题适定,在此条件下,得到插值函数的Lagrange型表示。
关键词:  非均匀(Ⅱ)型三角剖分  二元二次样条  边界条件  支集中心插值
DOI:
投稿时间:2001-05-10
基金项目:广西教育厅留学回国人员基金资助课题,广西民族学院重点项目资助课题。
Lagrange Interpolation of Bivariate Quadratic Splines S21,1(mn(2)) with Boundary Conditions
Huang Yongzhong, Liu Huanwen
(Dept. of Math. & Comp. Sci., Guangxi Univ. for Nationalities, Xixiangtang, Nanning, Guangxi, 530006, China)
Abstract:
A kind of Lagrange interpolation by bivariate quadratic splines with boundary conditions over non-uniform type-Ⅱ triangulation, called the interpolation to the center of the support of splines, is discussed.By using the oriented graphic technique of matrix, the existence and the uniqueness of the interpolation are obtained for a special triangulation. Furthermore, the representation of the interpolation function is given.
Key words:  non-uniform type-Ⅱ triangulation  bivariate quadratic splines  boundary conditions  interpolation to the center of the support

用微信扫一扫

用微信扫一扫