引用本文
  • 罗李平.拟线性抛物型偏微分方程组解的振动性[J].广西科学,2005,12(4):265-267.    [点击复制]
  • Luo Liping.Oscillation for Solutions of Systems of Quasilinear Parabolic Partial Differential Equations[J].Guangxi Sciences,2005,12(4):265-267.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 262次   下载 353 本文二维码信息
码上扫一扫!
拟线性抛物型偏微分方程组解的振动性
罗李平
0
(衡阳师范学院数学系, 湖南衡阳 421008)
摘要:
利用Green定理和微分不等式,研究一类拟线性抛物型偏微分方程组:(∂ui(x,t)/∂t)=ai(tui(x,t)+∑k=1s aik(tui(x,dk(t))-pi(x,t)ui(x,t)-∑j=1m fij[t,x,uj(x,e(t))],i=1,2,…,m解的振动性,获得该类方程组在两类不同边值条件:(∂ui(x,t)/∂N)+gi(x,t)ui(x,t)=0,(x,t)∈Ω×R+,i=1,2,…,mui(x,t)=0,(x,t)∈R+,i=1,2,…,m所有解振动的若干充分条件:limt→∞ inf∫e(t)t q(s) exp∫e(s)s p(r) drds > 1/e.
关键词:  微分方程  偏微分方程  拟线性  振动性
DOI:
投稿时间:2005-03-10
基金项目:
Oscillation for Solutions of Systems of Quasilinear Parabolic Partial Differential Equations
Luo Liping
(Department of Mathematics, Hengyang Normal University, Hengyang, Hunan, 421008, China)
Abstract:
The oscillation of solutions of the systems of a class of quasilinear parabolic partial differential equations:(∂ui(x,t)/∂t)=ai(tui(x,t)+∑k=1s aik(tui(x,dk(t))-pi(x,t)ui(x,t)-∑j=1m fij[t,x,uj(x,e(t))],i=1,2,…,m is studied by Green's theorem and differential inequalities.The sufficient conditions:limt→∞ inf∫e(t)t q(s) exp∫e(s)s p(r) drds > 1/e.for the oscillation of all solutions of the systems are obtained under two kinds of different boundary conditions:(∂ui(x,t)/∂N)+gi(x,t)ui(x,t)=0,(x,t)∈Ω×R+,i=1,2,…,m and ui(x,t)=0,(x,t)∈R+,i=1,2,…,m.
Key words:  differential equation  partial differential equation  quasilinear  oscillation

用微信扫一扫

用微信扫一扫