引用本文
  • 陈志强,韦程东,韦莹莹.Linex损失下Rayleigh分布参数倒数的Bayes估计[J].广西科学,2007,14(4):362-364.    [点击复制]
  • CHEN Zhi-qiang,WEI Cheng-dong,WEI Ying-ying.The Bayes Estimation of Rayleigh Distribution Parameter Reciprocal Under Linex Loss[J].Guangxi Sciences,2007,14(4):362-364.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 404次   下载 367 本文二维码信息
码上扫一扫!
Linex损失下Rayleigh分布参数倒数的Bayes估计
陈志强, 韦程东, 韦莹莹
0
(广西师范学院数学与计算机科学系, 广西南宁 530001)
摘要:
在Linex损失函数L(θ,δ)=ec(δ-θ)-c(δ-θ)-1,c>0下,给出Rayleigh分布的尺度参数倒数的唯一Bayes估计δB(X)=-1/clnE(e-|X)=(n+α)/cln(1+c/λ+T),多层Byaes估计δB(X)=-1/cln((∫0c01(Kλα)/((λ+c+T)n+α)dαdλ)/(∫0c01(Kλα)/((λ+T)n+α)dαdλ)),和容许性估计的一般形式Sln(1+c/d+T).
关键词:  Linex损失函数  Rayleigh分布  Byaes估计  容许性
DOI:
投稿时间:2007-07-04
基金项目:广西自然科学基金项目(0575051);广西教育厅科研项目资助
The Bayes Estimation of Rayleigh Distribution Parameter Reciprocal Under Linex Loss
CHEN Zhi-qiang, WEI Cheng-dong, WEI Ying-ying
(Department of Mathematics and Computer Science, Guangxi Teachers Education University, Nanning, Guangxi, 530001, China)
Abstract:
Under Linex loss function L (θ, δ)=ec (δ-θ)-c (δ-θ)-1, c>0, It is proved that the unique Bayes estimator δB (x), the multilayer Bayes estimator δB (X) and the general form of the admissible estimator are δB (X)=-1/cln E (e-|X)= (n+α)/cln (1+c/λ+T), δB (X)=-1/cln ((∫0c01 (Kλα)/ ((λ+c+T)n+α)dαdλ)/ (∫0c01 (Kλα)/ ((λ+T)n+α)dαdλ)) and Sln (1+c/d+T) respectively for the scale parameter reciprocal of the Rayleigh distribution.
Key words:  Linex loss function  Rayleigh distribution  Baysian estimator  admissible

用微信扫一扫

用微信扫一扫