摘要: |
设G是收缩临界κ连通图,κ=4q+r(0 ≤ r ≤ 2,q ≥ 2),证明如果G的原子A的阶为q-1,则G中存在另一个与A不相交的端片B,使得|B|≤ q. |
关键词: 端片 收缩临界 断片 原子 |
DOI: |
投稿时间:2007-11-12 |
基金项目:广西自然科学基金项目(桂科自0640063)资助 |
|
A Result of End with Smaller Cardinality in Contraction Critical κ Connected Graphs |
CHEN Xin-wei1,2, SU Jian-ji1
|
(1.Department of Mathematics, Guangxi Normal University, Guilin, Guangxi, 541004, China;2.Department of Basic Caurses, Global Institute of Software Technology, Suzhou, Jiangsu, 215163, China) |
Abstract: |
In this paper we prove the following result:let G be an contraction-critical k-connected graph, and k=4q+r (0 ≤ r ≤ 2, q ≥ 2), if G has an atom A with cardinality q-1, then G has another end B disjoint from A, such that |B| ≤ q. |
Key words: end contraction critical fragments atom |