引用本文
  • 张国兵,丁宣浩,蒋英春.两类B-样条小波的性质[J].广西科学,2009,16(3):243-245,252.    [点击复制]
  • ZHANG Guo-bing,DING Xuan-hao,JIANG Ying-chun.The Properties of Two Categories of B-spline Wavelets[J].Guangxi Sciences,2009,16(3):243-245,252.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 316次   下载 307 本文二维码信息
码上扫一扫!
两类B-样条小波的性质
张国兵, 丁宣浩, 蒋英春
0
(桂林电子科技大学数学与计算科学学院, 广西桂林 541004)
摘要:
讨论由多尺度分析构造的两类B-样条小波的紧支撑性,对称性或反对称性,消失矩及可导性等性质.这些性质的研究进一步完善了算子小波理论,增强了小波的实用性.
关键词:  样条小波  B-样条函数  Riesz基  多尺度分析
DOI:
投稿时间:2009-03-05
基金项目:国家自然科学基金项目(10871217);广西区研究生创新基金项目(2007105950701M04);广西区教育厅项目(桂教科研200607LX010);广西科学基金项目(桂科基0731018);桂林电子科技大学教研基金项目(Z20710)资助
The Properties of Two Categories of B-spline Wavelets
ZHANG Guo-bing, DING Xuan-hao, JIANG Ying-chun
(School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)
Abstract:
The properties of compactly supported, symmetry or antisymmetry, vanishing moments, derivative and so on of two categories of B-spline wavelets constructed by multiresolution analysis are discussed in this paper, by the study of these properties, operator and wavelet theory is obtained to be further improved and the practical application of wavelets is further enhanced.
Key words:  spline wavelet  B-spline function  Riesz basis  multiresolution analysis

用微信扫一扫

用微信扫一扫