引用本文
  • 周辉,冯兵,刘旭日,邹勇,唐慧,黄钦彬,陈庭军,邹东华.基于机器学习的静脉溶栓时间窗外急性缺血性脑卒中患者短期预后模型建立与验证[J].广西科学,2024,31(4):781-787.    [点击复制]
  • ZHOU Hui,FENG Bing,LIU Xuri,ZOU Yong,TANG Hui,HUANG Qinbin,CHEN Tingjun,ZOU Donghua.Establishment and Validation of a Short-term Prognostic Model for Acute Ischemic Stroke Patients Beyond the Time Window for Intravenous Thrombolysis Based on Machine Learning[J].Guangxi Sciences,2024,31(4):781-787.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 19次   下载 18 本文二维码信息
码上扫一扫!
基于机器学习的静脉溶栓时间窗外急性缺血性脑卒中患者短期预后模型建立与验证
周辉1, 冯兵2, 刘旭日1, 邹勇1, 唐慧1, 黄钦彬2, 陈庭军2, 邹东华3
0
(1.桂平市中医医院, 广西桂平 537200;2.桂平市人民医院, 广西桂平 537200;3.广西医科大学第二附属医院, 广西南宁 530007)
摘要:
本研究旨在探讨静脉溶栓时间窗外,急性缺血性脑卒中(Acute Ischemic Stroke,AIS)患者入院时常规临床资料对其短期不良结局的影响。该研究通过收集桂平市中医医院神经内科住院治疗的溶栓时间窗外AIS患者(774例)临床资料,比较短期不同预后患者入院时的临床资料,并利用机器学习分类(Classification)算法建模分析患者90 d内预后不良的影响因素,同时采用受试者工作特征曲线(ROC)和校准图验证模型的预测效能及准确度。研究结果显示:(1)3个月随访期内预后不良患者占比13.95%(108例)。(2)预后不良患者的年龄、血白细胞(WBC)水平、血C反应蛋白(C-Reactive Protein,CRP)水平、血甘油三酯(TG)水平、入院美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale,NIHSS)评分、梗死灶体积和发病-治疗时间大于或高于预后良好患者;预后不良患者的入院格拉斯哥昏迷(Glasgow Coma Scale,GCS)评分低于预后良好组,均差异显著(P<0.05)。机器学习分类算法中,极限梯度提升(Extreme Gradient Boosting,XGB)算法的效果最佳[受试者工作特征曲线下面积(Area Under Curve,AUC)=0.81],且校准曲线显示模型评估预测风险与实际发生风险的一致程度高。(3) XGB算法筛选的预测变量影响权重居前6位的依次为发病-治疗时间、血CRP水平、年龄、梗死灶体积、血TG水平与NIHSS评分。上述结果说明XGB算法可用于预测静脉溶栓时间窗外AIS患者短期不良预后的影响因素。
关键词:  急性缺血性脑卒中  超溶栓时间窗  预后  机器学习  临床预测模型
DOI:10.13656/j.cnki.gxkx.20240919.003
投稿时间:2023-10-17修订日期:2023-11-13
基金项目:广西壮族自治区卫生健康委员会科研课题(Z20200212)资助。
Establishment and Validation of a Short-term Prognostic Model for Acute Ischemic Stroke Patients Beyond the Time Window for Intravenous Thrombolysis Based on Machine Learning
ZHOU Hui1, FENG Bing2, LIU Xuri1, ZOU Yong1, TANG Hui1, HUANG Qinbin2, CHEN Tingjun2, ZOU Donghua3
(1.Traditional Chinese Medicine Hospital of Guiping City, Guiping, Guangxi, 537200, China;2.Guiping People's Hospital, Guiping, Guangxi, 537200, China;3.The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China)
Abstract:
The objective of this study is to investigate the effects of clinical data at admission on the short-term adverse outcomes of Acute Ischemic Stroke (AIS) patients beyond the time window for intravenous thrombolysis.The clinical data of 774 AIS patients beyond the time window for thrombolysis treated in the department of neurology in the Traditional Chinese Medical Hospital of Guiping City were collected.The clinical indicators at admission of patients with different short-term prognoses were compared.Machine learning classification algorithms were used to model and analyze the factors influencing poor prognosis within 90 d.The prediction performance and accuracy of the nomogram model were evaluated based on the Receiver Operating Characteristic (ROC) curve and calibration plot.The results showed:(1)13.95% (108 cases) of the patients had poor prognosis within the 3-month follow-up period.(2)The patients with poor prognosis had higher age,levels of White Blood Cell (WBC),C-Reactive Protein (CRP),and Triglyceride (TG),National Institutes of Health Stroke Scale (NIHSS) score at admission,infarct volume,and onset-to-treatment time than the patients with good prognosis.The patients with poor prognosis had lower Glasgow Coma Scale (GCS) score at admission than the patients with good prognosis (P<0.05).The Extreme Gradient Boosting (XGB) algorithm performed best,with the area under the ROC curve (AUC) of 0.81,and the calibration curve showed a high degree of consistency between the predicted and actual occurrence of risk.(3)The top six predictive variables selected by the XGB algorithm were onset-to-treatment time,CRP level at admission,age,infarct volume,TG level,and NIHSS score.These results indicate that the XGB algorithm can be used to predict the factors influencing short-term poor prognosis in AIS patients beyond the time window for intravenous thrombolysis.
Key words:  acute ischemic stroke  beyond the time window for thrombolysis  prognosis  machine learning  clinical prediction model

用微信扫一扫

用微信扫一扫