引用本文: |
-
段伟,黄廷磊,刘杰,韩啸宇.基于注意力机制的毫米波雷达ECG信号反演算法研究[J].广西科学,2024,31(5):833-841. [点击复制]
- DUAN Wei,HUANG Tinglei,LIU Jie,HAN Xiaoyu.Reconstruction of ECG Signals from Millimeter Wave Radar Based on Attention Mechanism[J].Guangxi Sciences,2024,31(5):833-841. [点击复制]
|
|
摘要: |
针对毫米波雷达反演高精度的人体心电图(ECG)信号,本文提出一种融合小波变换和注意力(Attention)机制的AM-CNN-GRU神经网络的ECG信号重建方法。首先对雷达信号进行预处理,从中提取与生理特征相关的相位形变信号,并使用滑动窗口去除直流干扰;然后利用小波变换对形变信号进行分解,提取出与ECG信号显著相关的小波基分量,并在CNN-GRU网络的基础上,对小波分解的信号引入通道注意力机制,输入到网络中训练得到ECG信号。实验数据验证表明,本文提出的模型相比传统的CNN-BiLSTM模型,在模型参数更轻量化的同时,取得了更高精度的ECG信号反演结果。 |
关键词: 毫米波雷达 心电图 卷积神经网络(CNN) 注意力机制 小波变换 |
DOI:10.13656/j.cnki.gxkx.20241127.002 |
投稿时间:2024-04-03修订日期:2024-07-09 |
基金项目:科技创新2030-重大项目(2021ZD0200800,2021ZD0200403)资助。 |
|
Reconstruction of ECG Signals from Millimeter Wave Radar Based on Attention Mechanism |
DUAN Wei1, HUANG Tinglei1,2, LIU Jie1, HAN Xiaoyu1
|
(1.Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China;2.Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China) |
Abstract: |
Aiming at high-precision reconstruction of Electrocardiogram (ECG) signals from Millimeter Wave Radar,a reconstruction method based on AM-CNN-GRU network combining wavelet transform and attention mechanism is proposed.Firstly,the radar signal is preprocessed to extract the phase deformation signal related to physiological characteristics,and the sliding window is used to remove the DC interference.Then,the deformation signal is decomposed by wavelet transform to extract the wavelet base component exhibiting a significant relationship with the ECG signal.While the CNN-GRU network model is built as the main architecture,wavelet decomposed signals are imported as input signals after application of the channel attention mechanism,and then the ECG signal is obtained.The experimental results showed that the proposed model was lighter in model parameters and achieved results with higher precision than the CNN-BiLSTM model. |
Key words: Millimeter Wave Radar ECG Convolutional Neural Network (CNN) attention mechanism wavelet transform |