摘要: |
设Ω=[0,xm]⊗[0,yn」,Ω的熟知的非均匀(Ⅰ)、(Ⅱ)型三角剖分分别记为△mn(i),i=1,2.△mn(i)上的分片二元k次C1多项式的全体记为S21(△mn(i)),称为二元k次一阶光滑的样条函数空间.进一步,引入其子空间S21(△mn(i))={s∈S21(△mn(i)):Dαs(·,0)=Dαs(·,yn),Dαs(0,·)=Dαs(xm,·),α=0,1}.称为双周期k次样条空间.本文给出了Ω的非均匀(Ⅱ)型三角剖分△mn(2)下双周期二次样条空间S21(△mn(2))的维数及一组基底. |
关键词: 非均匀(Ⅱ)型三角剖分 双周期二次样条空间 维数 基底 |
DOI: |
投稿时间:1996-03-13 |
基金项目:广西民族学院青年科研基金 |
|
Double Periodic Quadratic Spline Space S21(△mn(2)) over the Non-regular Type-2 Triangulation |
Lui Huanwen1, Shu Shi2
|
(1.Dept. of Math., Guangxi Institute for Nationalities, Xixiangtang, Nanning, Guangxi, 530006;2.Dept. of Math, Xiangtan University, Xiangtan, Hunan, 411105) |
Abstract: |
Let Ω=[0,xm] [0, yn], the well-known nonregular type-2 triangulation of Ω is denoted by △mn(i),and the space of piecewise C1 quadratic polynomials is denoted by S21(△mn(i)).Define S21(△mn(i))={s∈S21(△mn(i)):Dαs(·,0)=Dαs(·,yn),Dαs(0,·)=Dαs(xm,·),α=0,1},called double periodic quadratic spline space. In this paper, the dimension and a basis of the space S21(△mn(2)) were given. |
Key words: nonregular type-2 triangulation double periodic quadratic spline space dimension basis |