引用本文
  • 刘焕文,舒适.非均匀(Ⅱ)型三角剖分下双周期二次样条空间S21(mn(2))[J].广西科学,1996,3(3):8-11.    [点击复制]
  • Lui Huanwen,Shu Shi.Double Periodic Quadratic Spline Space S21(mn(2)) over the Non-regular Type-2 Triangulation[J].Guangxi Sciences,1996,3(3):8-11.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 350次   下载 341 本文二维码信息
码上扫一扫!
非均匀(Ⅱ)型三角剖分下双周期二次样条空间S21(mn(2))
刘焕文1, 舒适2
0
(1.广西民族学院数学系, 南宁市西乡塘 530006;2.湘潭大学数学系, 湖南湘潭 411105)
摘要:
设Ω=[0,xm]⊗[0,yn」,Ω的熟知的非均匀(Ⅰ)、(Ⅱ)型三角剖分分别记为△mn(i),i=1,2.△mn(i)上的分片二元kC1多项式的全体记为S21(mn(i)),称为二元k次一阶光滑的样条函数空间.进一步,引入其子空间S21(mn(i))={sS21(mn(i)):Dαs(·,0)=Dαs(·,yn),Dαs(0,·)=Dαs(xm,·),α=0,1}.称为双周期k次样条空间.本文给出了Ω的非均匀(Ⅱ)型三角剖分mn(2)下双周期二次样条空间S21(mn(2))的维数及一组基底.
关键词:  非均匀(Ⅱ)型三角剖分  双周期二次样条空间  维数  基底
DOI:
投稿时间:1996-03-13
基金项目:广西民族学院青年科研基金
Double Periodic Quadratic Spline Space S21(mn(2)) over the Non-regular Type-2 Triangulation
Lui Huanwen1, Shu Shi2
(1.Dept. of Math., Guangxi Institute for Nationalities, Xixiangtang, Nanning, Guangxi, 530006;2.Dept. of Math, Xiangtan University, Xiangtan, Hunan, 411105)
Abstract:
Let Ω=[0,xm] [0, yn], the well-known nonregular type-2 triangulation of Ω is denoted by △mn(i),and the space of piecewise C1 quadratic polynomials is denoted by S21(mn(i)).Define S21(mn(i))={sS21(mn(i)):Dαs(·,0)=Dαs(·,yn),Dαs(0,·)=Dαs(xm,·),α=0,1},called double periodic quadratic spline space. In this paper, the dimension and a basis of the space S21(mn(2)) were given.
Key words:  nonregular type-2 triangulation  double periodic quadratic spline space  dimension  basis

用微信扫一扫

用微信扫一扫